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a b s t r a c t

A novel background subtraction method that can work under complex environments is presented in this
paper. The proposed method consists of two stages: coarse foreground detection through the phase based
background model we present, and foreground refinement using the distance transform. We first propose
a phase feature which is suitable for background modeling. The background model is then built where
each pixel is modeled as a group of adaptive phase features. Although the foreground detection result
produced by the background model only contains some sparse pixels, the basic structure of the fore-
ground has been captured as a whole. In the next stage, we adopt the distance transform to aggregate
the pixels surrounding the foreground so that the final result is more clear and integrated. Our method
can handle many complex situations including dynamic background and illumination variations, espe-
cially for sudden illumination change. Besides, it has no bootstrapping limitations, which means our
method is without background initialization constraints. Experiments on real data sets and comparison
with the existing techniques show that the proposed method is effective and robust.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Background subtraction is often the first task in vision-based
applications, such as security and surveillance. The output of back-
ground subtraction is usually an input to higher level processes,
making it a critical part of the system. Background subtraction con-
sists of two phases: building a statistical representation of the
background scene, and detecting the foreground by ‘‘subtracting’’
the background from the scene. The performance of background
subtraction depends mainly on the background modeling tech-
nique it uses. Natural environments make background subtraction
a challenging task since they usually contain complex scenes
including rippling water, waving trees, illumination variations, etc.

In the last decade, many kinds of approaches have been pro-
posed for moving object detection. These techniques have used pix-
el intensity, texture or other effective information for background
modeling. However, background modeling techniques utilizing
phase information are rarely seen. Perhaps the phase wrapping
property and the narrow value range restrict its applications.

In this paper, we propose an efficient background subtraction
technique based on a phase feature and the distance transform.
Our method consists of two stages: modeling the phase based
background for coarse foreground detection, and foreground

refinement by using the distance transform. We choose the phase
for background modeling because it has the property of being
insensitive to illumination variations. In order to overcome the
inherent limitations of phase wrapping and its narrow value range,
a new phase feature which is suitable for background modeling is
proposed. After the image patch is convolved with local Gabor fil-
ters, the phase feature is constructed by adding up the Gabor
phases corresponding to the first largest amplitudes. Assuming
the feature value of a particular pixel over time as a pixel process,
we model its current value using a mixture of Gaussian distribu-
tions. In addition, the adaptive updating scheme ensures that the
model has no bootstrapping limitations. The proposed model can
detect the basic structure of the foreground but with a sparse rep-
resentation, the distance transform is then applied to aggregate the
pixels surrounding the foreground in order to get more integrated
result. We will justify our method by experiments.

The rest of this paper is organized as follows: Section 2 provides
a brief review of existing works. A new phase feature for back-
ground modeling is proposed in Section 3. In Section 4, our phase
based background model is described in detail. The distance trans-
form for foreground refinement is given in Section 5. Experimental
results and evaluations are given in Section 6. Conclusions are fi-
nally drawn in Section 7.

2. Related work

One of the most common methods of background description is
based on a Gaussian distribution. Wren et al. (1997) represented
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the intensity distribution of each background pixel with one
Gaussian distribution. In order to describe more complicated
scenes, a Gaussian mixture model (GMM) was proposed (Stauffer
and Grimson, 1999). The model for each pixel intensity consisted
of a few Gaussians, and an online K-means approximation tech-
nique instead of the exact EM algorithm was adopted for updating.
The GMM technique was then modified by several researchers. For
example, Zivkovic and van der Heijden (2006) extended the model
by constantly selecting the appropriate number of Gaussian com-
ponents for each pixel while updating the model parameters. Lee
(2005) presented an adaptive learning rate calculated for each
Gaussian at every frame to improve the model convergence speed.

Another popular technique is the nonparametric statistical ap-
proach. Elgammal et al. (2002) utilized a kernel density estimation
(KDE) technique for background modeling, where the probability
density function (PDF) of the pixel intensity was estimated directly
from the data without any distribution assumptions. In (Mittal and
Paragios, 2004), an estimation method with an adaptive kernel size
for each data point was used. Based on the assumption that ergo-
dicity in time often holds spatially, Jodoin et al. (2007) performed
pixel kernel density estimation with only one background frame.
This method had a lower memory requirement.

Some authors have proposed region-based techniques for back-
ground modeling. Heikkilä and Pietikäinen (2006) modeled the
background using local binary pattern (LBP) histograms calculated
over a circular region around the pixel. In (Zhang et al., 2008), the
LBP feature was computed considering both spatial and temporal
information. Mason and Duric (2001) adopted edge and color his-
tograms calculated over the block area as the features to describe
the block. Since a region can capture more global information than
a single pixel, region-based approaches are more robust under dy-
namic background scenes.

Several other effective models and methods have also been used
for background subtraction. Zhong and Sclaroff (2003) cast the dy-
namic background region in time as an autoregressive moving pro-
cess, and they used a robust Kalman filter to estimate the region
intrinsic appearance. In (Stenger et al., 2001), a Hidden Markov
Model (HMM) with an online parameter estimation scheme was
proposed to model the background. Patwardhan et al. (2008) pro-
posed to detect the foreground using pixel layers. Inspired by the
biological mechanisms of motion-based perceptual grouping,
Mahadevan and Vasconcelos (2010) treated background subtrac-
tion as a saliency detection problem, and they proposed a spatio-
temporal saliency algorithm that worked well with dynamic
background scenes. Assuming background and foreground were
two mutual independent signals, Tsai and Lai (2009) adopted the
independent component analysis (ICA) technique to extract the
foreground. Maddalena and Petrosino (2008) proposed a neural
network architecture to model the background, but this technique
needed more memory space. Casting background subtraction as a
sparse error recovery problem, Dikmen and Huang (2008) pre-
sented a sparse representation framework for foreground detec-
tion, then they further discussed the different base selection
methods (Dikmen et al., 2009).

3. New phase feature for background modeling

Phase contains a wealth of information, and its great impor-
tance has been introduced in detail by Oppenheim and Lim
(1981). In recent years, phase as a feature has been successfully ap-
plied to several fields, such as palmprint identification (Zhang
et al., 2003), face recognition (Zhang et al., 2007), etc. However, lit-
tle work has utilized phase information for background modeling.

In this section, we propose a new phase feature for background
modeling. The input image is first convolved with local Gabor

filters so that each pixel has a group of features containing multiple
amplitudes and corresponding phase values. For each pixel, we se-
lect the effective phase information according to the criteria that
higher amplitude value in the feature group means more accurate
local structure information has been captured, and its correspond-
ing phase information is more representative. The new phase fea-
ture is then defined as the sum of the selected phase values.

Due to the properties of spatial localization, orientation selec-
tivity, and spatial-frequency selectivity, Gabor filters have been
widely used to extract pixel amplitude and phase information. A
two-dimensional Gabor filter is a Gaussian kernel function modu-
lated by a sinusoidal plane wave. The Gabor wavelets can be de-
fined as follows (Zhang et al., 2007):

wu;vðzÞ ¼
kku;vk2

r2 eð�kku;vk2kzk2=2r2Þ½eiku;v z � e�r
2=2� ð1Þ

where ku;v
��!
¼ kjx

kjy

� �
¼ kvcos/u

kvsin/u

� �
; kv ¼ fmax=2v=2; /u ¼uðp=umaxÞ;

v ¼ 0; . . . ;vmax � 1; u¼ 0; . . . ;umax � 1, v is the frequency and u is
the orientation. vmax and umax represent the number of frequencies
and orientations, respectively. The first term in the square brackets
in (1) determines the oscillatory part of the kernel, and the second
term compensates for the DC value. r determines the ratio of the
Gaussian window width to wavelength. The Gabor transformation
of a given image is defined as its convolution with the Gabor
functions:

Gu;vðzÞ ¼ IðzÞ �Wu;vðzÞ ð2Þ

where the symbol ‘‘⁄’’ represents the convolution operator, z = (x,y)
denotes the image position, and Gu,v(z) is the convolution result
corresponding to the Gabor kernel at frequency v and orientation
u. Gu,v(z) is a complex value which is composed of one amplitude
item Au,v(z) and one phase item hu,v(z) 2 [0,2p). It can be written
as:

Gu;vðzÞ ¼ Au;vðzÞ � expðihu;vðzÞÞ ð3Þ

Since the phase value varies quickly with image locations,
applying the Gabor filter to the entire image would produce results
too coarse to effectively represent the phase feature. In order to
more precisely extract the phase information for each pixel, we di-
vide the image into non-overlapping partitions and execute patch
based convolutions. Based on our experience, the Gabor filters
are designed with four frequencies and six orientations, which
means vmax = 4, umax = 6. Fig. 1 shows the amplitude responses of
Gabor function with different frequencies. The frequency of Gabor
wavelet is computed according to the formula: kv = fmax/2v/2, v = 0,
. . . , vmax � 1.

It can be seen that the frequency value is higher and the Gabor
wavelength is shorter when v has a lower value. While the value v
is increasing, the frequency value is decreasing and the Gabor
wavelength is becoming longer. We select four different frequen-
cies in our experiments because the wavelength of the central
envelope is about eight pixels when v equals to 3, which is capable
of capturing image local structures; and more frequencies would
contribute very little to our problem. The number of orientations
is set to 6 to maintain the discriminability of the Gabor filters.

The patch size is determined by considering the Gabor wave-
length. Larger patch size may result in a coarse information repre-
sentation, while smaller patch size may not capture image local
structures. Varying the patch size from 3 to 6, we observe the re-
sults so as to choose the appropriate value. Taking a public se-
quence which features a sudden illumination change (Toyama
et al., 1999) as an example, Fig. 2 shows the convolution results
at a randomly selected point from the 1865th frame using different
patch sizes.
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