Pattern Recognition Letters 32 (2011) 1572-1580

Contents lists available at ScienceDirect -
Pattern Recognition

Letters
Pattern Recognition Letters ,
&
: . CEa ""“l 5
journal homepage: www.elsevier.com/locate/patrec S

Improving DBSCAN’s execution time by using a pruning technique on bit vectors

Selim Mimaroglu *, Emin Aksehirli

Department of Computer Engineering, Bahcesehir University, Ciragan Caddesi, 34353 Besiktas, Istanbul, Turkey

ARTICLE INFO

Article history:

Received 10 May 2010
Available online 15 June 2011
Communicated by W. Pedrycz

Keywords:
Clustering
DBSCAN

Binary methods
Pruning

ABSTRACT

Clustering is the process of assigning a set of physical or abstract objects into previously unknown groups.
The goal of clustering is to group similar objects into the same clusters and dissimilar objects into differ-
ent clusters. Similarities between objects are evaluated by using the attribute values of objects. There are
many clustering algorithms in the literature; among them, DBSCAN is a well known density-based clus-
tering algorithm. We improve DBSCAN’s execution time performance for binary data sets and Hamming
distances. We achieve considerable speed gains by using a novel pruning technique, as well as bit vectors,
and binary operations. Our novel method effectively discards distant neighbors of an object and com-
putes only the distances between an object and its possible neighbors. By discarding distant neighbors,
we avoid unnecessary distance computations and use less CPU time when compared with the conven-
tional DBSCAN algorithm. However, the accuracy of our method is identical to that of the original
DBSCAN. Experimental test results on real and synthetic data sets demonstrate that, by using our pruning

technique, we obtain considerably faster execution time results compared to DBSCAN.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Clustering is the process of organizing objects into groups that
have similar members; a distance metric is used for evaluating dis-
similarity. Clustering, which has broad range of applications, is also
known as unsupervised classification. The goal is to place objects
that are similar to each other in the same cluster, and objects that
are dissimilar in different clusters.

Clustering has a long and rich history in a variety of scientific
fields (Jain, 2010). Some of the clustering algorithms partition ob-
jects into groups and are therefore known as partitional clustering
algorithms. For example, k-means (MacQueen, 1967) is a well-
known partitional clustering algorithm that divides a set of objects
into k clusters where k is a user specified parameter. Another type
of clustering is hierarchical clustering; agglomerative methods are
well-known techniques of this type. Yet another type of clustering
is density based clustering: DBSCAN (Ester et al., 1996) is a popular
algorithm that can correctly cluster arbitrarily shaped data sets
when provided with the right parameters.

DBSCAN is a very popular density based method that it is still
commonly used as a reference to compare the accuracies of new
methods, such as in (Yousri et al., 2009; Garai and Chaudhuri,
2004; Zhong et al., 2008; Liu et al., 2008). We improve DBSCAN'’s
execution time performance by using a novel pruning technique,
as well as bit vectors and binary operations.

* Corresponding author. Tel.: +90 212 381 05 55; fax: +90 212 381 05 50.
E-mail addresses: selim.mimaroglu@bahcesehir.edu.tr (S. Mimaroglu), emin.
aksehirli@bahcesehir.edu.tr (E. Aksehirli).

0167-8655/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.patrec.2011.06.003

The Hamming distance measures the degree of difference be-
tween symbols that occur in the same positions. This measure is
used widely on sequences such as words, gene expressions, proteins,
web clicks, and natural and social events for conducting data mining
activities. The Hamming distance is also preferred in natural lan-
guage processing and text searching for detecting misspellings and
correcting them automatically. There are many applications of the
Hamming distance; two interesting applications of robotics and
compression that use the Hamming distance can be found in (Ros
and Sutton, 2004; Haikonen, 2007). Some very popular edit dis-
tances and the Jaccard distance are built on top of the Hamming
distance.

Continuous valued data attributes can be transformed into cat-
egorical and binary forms. Equal Width Binning divides the data
range into equal width intervals where each interval defines a cat-
egory. Equal Frequency Binning divides the data range into intervals
that contains equal numbers of objects. Clustering methods, such
as k-means, can be used to discretize the data as well. For discret-
ization, supervised methods can be used as well where discretiza-
tion is conducted according to data labels. In these methods,
numbers of bins and clusters are determined according to the data
set and the requirements of the application. Categorical attributes
can be converted into binary form easily by listing all of the cate-
gorical values in the list of attributes and by representing the cur-
rent value with 1, and the other values with 0.

Our paper is structured as follows: Section 2 contains related
work. In Section 3, the conventional DBSCAN algorithm is pre-
sented. Section 4 introduces our improvement to DBSCAN, and Sec-
tion 5 provides experimental evaluations. In the final section, we
present conclusions and future directions.


http://dx.doi.org/10.1016/j.patrec.2011.06.003
mailto:selim.mimaroglu@bahcesehir.edu.tr
mailto:emin. aksehirli@bahcesehir.edu.tr
mailto:emin. aksehirli@bahcesehir.edu.tr
http://dx.doi.org/10.1016/j.patrec.2011.06.003
http://www.sciencedirect.com/science/journal/01678655
http://www.elsevier.com/locate/patrec

S. Mimaroglu, E. Aksehirli/ Pattern Recognition Letters 32 (2011) 1572-1580 1573

2. Related work

In this section we provide a non-exhaustive list of algorithms
that improve the execution time performance of DBSCAN using
methods such as space partitioning, sampling, and reducing the
number of core points. We also describe the strengths and weak-
nesses of these methods.

Partitioning the data set to reduce the search space and hence
improve the execution time of DBSCAN is a well-known technique.
To partition the data set, EI-Sonbaty et al. (2004) proposes the use
of CLARANS; the DBSK algorithm (Rui and Chunhong, 2008) uses k-
means, PDBSCAN uses the statistical characteristics of the data, and
a recent method proposed in (Jiang and Li, 2009) uses a one-pass
clustering algorithm. Space indexing techniques such as KD-tree
and R-tree are used for fast retrieval of an object’s neighbors in a
data set, where indexing techniques can be classified as space par-
titioning methods. In general, partitioning is regarded as a pre-pro-
cessing step with its own requirements and limitations. Besides
mechanical requirements of partitioning methods such as extra
memory and extra computation time, data set dependent require-
ments such as determining the right input parameters makes these
methods less appealing.

The execution time of DBSCAN can be reduced by using only a
subset of the data set, which is known as sampling. Sampling-based
DBSCAN, SDBSCAN (Zhou et al., 2000), runs DBSCAN on a randomly
selected subset of objects to form clusters. Rough-DBSCAN (Visw-
anath and Babu, 2009) employs the well-known Leader clustering
algorithm and rough set theory for sampling and then producing
approximate clusters. Using low sampling rates for obtaining good
execution time can degrade the accuracy substantially.

FDBSCAN (Zhou et al., 2000) and IDBSCAN (Borah and Bhatta-
charyya, 2004) reduce the execution time by utilizing smart core
detection methods. KIDBSCAN (Tsai and Liu, 2006) locates the
high-density areas using k-means and introduces core points with
respect to density rankings. Sampling based improvement by
reducing the number of core points is introduced in (Tsai and Sung,
2010). SPARROW (Folino et al., 2009) reduces the number of core
points using a method that is inspired by the flocking mechanism
of birds. Smart detection of core points and sampling on the core
points may result in anomalies such as falsely dividing the original
clusters and false identification of border points as noise.

Parallel approaches of DBSCAN are introduced in (Zhou et al.,
2000; Sakellariou et al., 2001; Guo et al., 2002). Although parallel
implementations may improve the execution time performance lo-
cally at each processor, combining the results into the final output
is not trivial.

3. The DBSCAN algorithm

DBSCAN (Density Based Spatial Clustering of Applications with
Noise), which is shown in Algorithm 1, is a simple and effective
density-based clustering algorithm that can identify arbitrary
shape clusters and noise (Ester et al., 1996). In DBSCAN, the follow-
ing main steps are performed: (1) Label all objects as core, border,
or noise points with respect to the input parameters, (2) Put an
edge between all core points that are neighbors, (3) Label con-
nected core points as a cluster, and (4) Include all of the border
points within the neighborhood of a cluster into the same cluster.

An object is a core point if the number of objects with its ¢ ra-
dius is at least MinPts. A border point is not a core point, but is lo-
cated within the ¢ radius of a core point. A noise point is an object
that is neither a core point nor a border point. In Fig. 1, the number
of points within the ¢ radius of point p is 7. In Fig. 2, p; is a core
point, p, is a border point, and ps is noise with respect to ¢ and
MinPts =17.

Fig. 1. Center based density in DBSCAN.

p2 is a border point
p1 is a core point

O
p3 is a noise point

@)

Fig. 2. A data set labeled with respect to ¢ and MinPts = 7.

Algorithm 1. DBSCAN algorithm

Input: D: data set, &: radius, MinPts: minimum number of
points
Output: II: Clustering
1: clusterld =0
2: for all unvisited point p € D do
3: mark p as visited
4: N =getNeighbors(p,¢)
5: if sizeof(N) < MinPts then
6: mark p as noise point
7.
8
9

else
clusterld + +
: add p to cluster clusterld
10: for all point p’ € N do

11: if p’ is not visited then

12: mark p’ as visited

13: N' = getNeighbors(p', €)

14: if sizeof(N') > MinPts then

15: N=NuN

16 if p' does not belong to a cluster then
17: add p’ to cluster clusterld

18: return I1

4. Binary approach for DBSCAN

The DBSCAN algorithm can find arbitrary shape clusters in a
data set accurately when provided with the correct &€ and MinPts
values. The time complexity of the DBSCAN algorithm is O(n?),
where n is the number of data points. If the distance matrix is
stored, the space complexity is also O(n?). However, it is possible
to compute the distance matrix on the fly and to reduce the space



Download English Version:

https://daneshyari.com/en/article/536500

Download Persian Version:

https://daneshyari.com/article/536500

Daneshyari.com


https://daneshyari.com/en/article/536500
https://daneshyari.com/article/536500
https://daneshyari.com

