ELSEVIER

Contents lists available at ScienceDirect

Applied Surface Science

journal homepage: www.elsevier.com/locate/apsusc

Growth of *b*-axis oriented VO₂ thin films on glass substrates using ZnO buffer layer

Te-Wei Chiu^{b,*}, Kazuhiko Tonooka^a, Naoto Kikuchi^a

- ^a Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) AIST Tsukuba Central 2,
- 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
- b Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei, 106, Taiwan

ARTICLE INFO

Article history: Received 17 January 2010 Received in revised form 18 March 2010 Accepted 23 April 2010 Available online 23 May 2010

Keywords: VO₂ ZnO Buffer layer b-Axis Preferential orientation

ABSTRACT

 VO_2 thin films are grown on glass substrates by pulsed laser deposition using vanadium metal as a target. In this study, a ZnO thin film was used as a buffer layer for the growth of VO_2 thin films on glass substrates. X-ray diffraction studies showed that the VO_2 thin film had b-axis preferential orientation on a c-axis oriented ZnO buffer layer. The thickness of the ZnO buffer layer and the oxygen pressure during VO_2 deposition were optimized to grow highly b-axis oriented VO_2 thin films. The metal-insulator transition properties of the VO_2 film samples were investigated in terms of infrared reflectance and electrical resistance with varying temperatures.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Past studies have reported that vanadium dioxide (VO_2) has a thermally induced semiconductor-to-metal transition at 341 K, accompanied by a structural change [1]. Below this transition temperature, VO_2 is a narrow gap (0.7 eV) semiconductor. Above 341 K, it has metallic properties. VO_2 is highly transparent in the infrared spectral band between 2.5 and 11.5 μ m, below its transition temperature. The metallic phase at high temperatures, however, strongly attenuates incident electromagnetic radiation at all frequencies [2]. These dramatic changes in the physical properties of VO_2 allow application in optical switching devices, optical recording devices, infrared sensors, switchable/tunable microwave devices, un-cooled microbolometers, and energy efficient smart windows for buildings [3–5].

The desired properties of VO_2 thin films are high resistance and reflectance change during phase transition and a narrow hysteresis width. It has been proven that using single crystal substrates is effective to obtain VO_2 thin films with a large electrical and optical change during phase transition and a narrow hysteresis width because metal-insulator domain wall propagation of highly oriented VO_2 is faster. Orientation control is an interesting topic in thin film growth; highly oriented VO_2 films have been obtained on

sapphire and TiO_2 single crystals [6,7]. However, single crystal substrates are expensive and difficult to prepare on a large scale. These aspects impede application in smart windows. The phase transition properties of VO_2 thin films deposited on various substrates reported in the literature are shown in Table 1. As can be seen, $(0\,2\,0)$ oriented VO_2 thin film shows better metal-insulator transition properties [6–10]. In order to obtain orientation controlled VO_2 thin films on glass substrate, this study tries to find a suitable buffer for VO_2 growth. It has been show that c-axis preferentially orientated ZnO thin films can be prepared on glass substrates [11]. The surface structures of c-plane ZnO are similar to sapphire and have a hexagonal plane. This study used a c-axis, which is a highly preferentially oriented ZnO thin film, as a buffer layer to control the growth orientation of VO_2 thin films on glass substrates.

2. Experimental details

 VO_2 thin films and ZnO buffer were deposited on glass substrates by focusing a frequency-quadruped Nd-YAG laser (λ = 266 nm). The laser beam, for ablation, was focused by a quartz lens to a fluence of approximately $1.0\,\text{J/cm}^2$ and directed at an angle of 40° on the targets. The targets used for deposition were pure V metal and ZnO ceramic pellets. These targets were located on multiple target holders, and thus all layers were prepared in a single run process. The glass substrate, placed parallel to the target at a distance of 40 mm, was kept on a substrate holder and rotated during deposition. During deposition, the substrate was heated by an infrared lamp heater.

^{*} Corresponding author.

E-mail address: tewei@ntut.edu.tw (T.-W. Chiu).

Table 1The phase transition properties of VO₂ thin films deposited on various substrates reported in the literature.

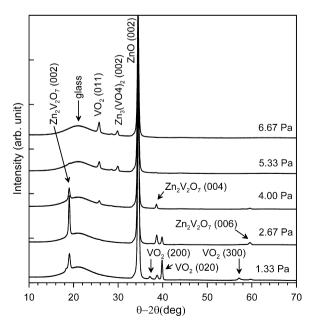
Deposition method	Substrate	Preferential orientation of VO ₂	Phase transition temperature (°C)	Hysteresis width (°C)	Thickness (nm)	Ref.
	VO ₂ single crystal		68	0.1	_	[8]
PLD (NA)	TiO ₂ (0 0 1)	(002)	96	7 ^a	10-15	[7]
	TiO ₂ (110)	(110)	27	10 ^a	10-15	
		NA	~68	NA	100	
PLD (ArF)	Sapphire(0001)	(020)	65(70) ^b	3	NA	[6]
	Sapphire $(10-10)$	(020)	55(60) ^b	1	NA	
PLD (KrF)	MgO(100)	NA	70	2^a	500	[9]
	Fused quartz	(011)	68	11 ^a	500	
Sputtering	Glass	(011)	60	15	130	
Alkoxide sol-gel		(011)	60	10	NA	[10]
Aqueous sol-gel		(011)	56	7	700	
PLD	Glass	(011)	72	11	58	This study
(Nd-YAG)	ZnO/glass	(020)	70	7	58	

^a Estimated from the figures shown in literature.

The deposition chamber was initially evacuated by a turbo molecular pump to achieve a base pressure of the order of 5×10^{-6} Pa. It was then backfilled with O_2 to obtain a suitable pressure for the deposition of each film. ZnO layers were deposited at a pressure of 1.33 Pa in O_2 . During deposition of both ZnO and VO_2 , the substrate temperature was kept at $500\,^{\circ}$ C. The deposition rates of the ZnO and VO_2 thin films were determined by SEM cross section images. The deposition rates of ZnO and VO_2 under 1.33 Pa in O_2 are 10.12 and 0.96 nm/min, respectively.

The crystalline phases of the films were identified with an X-ray diffractometer (XRD) (X' Pert MPD, PANalytical, Netherlands). The electrical resistance of the films was measured by the four-point probe method. During the measurement of electrical resistance the films were heated from room temperature to 80 °C in air using a hotplate. The infrared reflection spectrum of the sample was measured by an FT-IR spectrometer (BRUKER TENSOR27) with a reflectivity measurement accessory (BRUKER A517/Q, beam incident angle 30°). A gold mirror (BRUKER) was used as the reflectance reference, and the background spectra was measured without a sample on the sample holder. A plate shaped heater was placed over the sample to heat the sample to above its transition temperature.

3. Results and discussion


3.1. Dependence on O₂ pressure during deposition

Because of its half-filled d-shell, vanadium possesses a set of valence states and forms a number of oxides such as VO, V2O3, VO_2 , and V_2O_5 . Thus, the forming condition of VO_2 films prepared from V metal target by reactive laser ablation is very sensitive and has a strong dependence on oxygen pressure. First, 100-nm thick ZnO thin films were prepared on glass substrates. The VO₂ films were then deposited continuously on the ZnO film under various O₂ pressures at 500 °C for 60 min. Fig. 1 shows the XRD patterns of the VO₂ films deposited on glass substrates, using a 100-nm thick ZnO buffer with various O₂ partial pressure. ZnO (002) peaks were observed in all O₂ pressures. A peak indicating VO₂ (020) was observed on the film samples deposited under 1.33 Pa and 2.67 Pa, respectively. However, peaks indicating $Zn_2V_2O_7$ (002) and (004) were also observed. In XRD patterns of film deposited under 4.00 Pa, there appeared peaks indicating Zn₂V₂O₇ (002), (004), and VO_2 (011); under 5.33 Pa and 6.67 Pa, peaks indicating VO_2 (011) and $Zn_3(VO_4)_2$ (002) were observed. The results indicate that b-axis oriented VO₂ film could be prepared under 1.33 Pa in O₂ partial pressure using a ZnO buffer layer. However, some of the deposited VO₂ reacted with ZnO to form c-axis preferentially oriented Zn₂V₂O₇.

3.2. Thickness dependence of ZnO buffer layer

To examine the effect of the thickness of a ZnO buffer layer, the thickness of the ZnO film was varied, and VO2 films were continuously deposited under 1.33 Pa in O₂ partial pressure for 60 min. The XRD patterns of the films deposited, with various thicknesses of ZnO films, are shown in Fig. 2. XRD patterns of the VO₂ film, deposited directly on glass substrate and with 1.6-nm thick ZnO buffer layer, appear to have peaks indicating VO₂ (0 1 1). When the ZnO film was thicker than 10 nm, $Zn_2V_2O_7$ peaks were observed. VO_2 (020) peaks were observed only in the VO_2 film deposited on a 5-nm thick ZnO film. The stack structure of VO₂ films deposited on glass substrate, using ZnO films with various thicknesses, is shown in Fig. 3. With direct deposition of VO₂ films on the glass substrate, polycrystalline VO₂ films were formed on the amorphous substrate. When the ZnO film was only 1.6 nm, the glass surface was not wholly covered; the deposited vanadium reacted with ZnO to form another compound, possibly Zn₂V₂O₇, and some polycrystalline VO_2 . In this case, only small VO_2 (0 1 1) peaks were observed.

When the ZnO buffer layer was as thick as 5 nm, only peaks indicating b-axis oriented VO₂ were observed in the XRD pattern. The broad peak of the glass substrate may have hidden the small fraction of Zn₂V₂O₇ peak. Peaks indicating VO₂ (0 2 0) and Zn₂V₂O₇

Fig. 1. XRD patterns of the films deposited with 100-nm thick ZnO layer under various O₂ pressures.

b From the figures shown in the literature, the phase transition temperature, midpoint of hysteresis loop, is about 70 and 60 °C, respectively.

Download English Version:

https://daneshyari.com/en/article/5365506

Download Persian Version:

https://daneshyari.com/article/5365506

<u>Daneshyari.com</u>