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a b s t r a c t

How to decompose the mixed pixels precisely and effectively for multispectral/hyperspectral remote
sensing images is a critical issue for the quantitative remote sensing research. This paper proposes a
new method for decomposition of mixed pixels of multispectral/hyperspectral remote sensing images.
The proposed method introduces the algorithm of Bayesian self-organizing map (BSOM) into the problem
of the decomposition of mixed pixels. It estimates Gaussian parameters by minimizing the Kullback–Lei-
bler information metric, and finishes the unmixing with Gaussian mixture model (GMM). In order to
obtain a high unmixing precision, we need to extend the range of Gaussian distributions, and thus we
propose a 3r variance adjustment method to solve this problem. In addition, the proposed unmixing
model automatically satisfies two constraints which are demanded for the problem of the decomposition
of mixed pixels: abundances non-negative constraint (ANC) and abundances summed-to-one constraint
(ASC). Experimental results on simulated and practical remote sensing images demonstrate that the pro-
posed method can get good unmixing results for the decomposition of mixed pixels and is more robust to
noise than other methods.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

For the limited space resolution of remote sensing images, every
pixel of these images usually represents a large area on the ground.
Thus, it is very possible that a pixel is a mixture of some typical
ground objects (endmembers) in proportions (abundance fractions)
(Plaza et al., 2004). The existence of mixed pixels reduces the accu-
racy of recognition and classification of ground objects based on pix-
el-level, and handicaps the development of the quantitative remote
sensing technology. Moreover, a higher resolution will cause a high-
er cost for both initial acquisition and subsequent processing, thus
an alternative way is to do the decomposition of mixed pixels. In
practice, how to decompose these mixed pixels to obtain corre-
sponding endmembers and abundance fractions precisely and
effectively is an essential issue for high-accuracy classification and
recognition of ground objects (Lu et al., 2003). Some different algo-
rithms have been proposed to estimate the endmembers and abun-
dance fractions including Linear Spectrum Mixture Model (LSMM)
(Small, 2001; Haertel and Shimabukuro, 2005), neural network
algorithms (Foody et al., 1997; Wang and Zhang, 1998; Zhang and
Shao, 2002), and Fuzzy C-means clustering (Foody, 2000; Bastin,
1997; Friedman and Kandel, 1999), etc.

LSMM (Small, 2001; Haertel and Shimabukuro, 2005) was a
widely used model to solve the unmixing problem. In this model,
every mixed pixel is supposed to be a linear mixture of endmem-
bers, and a linear equation group needs to be solved. Then a meth-
od named constrained least squares (CLS) (Shimabukuro and
Smith, 1991) was proposed to solve the linear equation group with
the abundances summed-to-one constraint (ASC). But this CLS
method cannot satisfy both the ASC and the abundances non-neg-
ative constraint (ANC) automatically. It needs a forcible regulation
(they call it quadratic programming) to make the ANC to be satis-
fied, and this forcible regulation may cause its unmixing result
unacceptable. Except for the linear mixture model, there are some
other models proposed for unmixing, such as the neural network
model and the fuzzy model. Some researchers have applied the
artificial neural network (ANN) (Foody et al., 1997; Wang and
Zhang, 1998; Zhang and Shao, 2002) such as backward propagation
(BP) neural network and radial-basis function (RBF) neural net-
work to estimate the abundance fractions of mixed pixels. In these
methods, the neural network adjusts its weight values by super-
vised training, and every training sample composes of a mixed pix-
el and its corresponding abundance fractions which have already
been known. After supervised training, for every mixed pixel as
the input, the outputs of the neural network are the unmixing
abundance fractions. But this kind of methods cannot satisfy the
ANC and the ASC, and that usually causes their unmixing results
unacceptable. The fuzzy model based on Fuzzy C-means (FCM)
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clustering is also introduced (Foody, 2000; Bastin, 1997; Friedman
and Kandel, 1999). In the fuzzy model, they generate the clustering
centers and the membership degrees by unsupervised clustering,
where the clustering centers correspond to endmembers, and the
membership degrees correspond to abundance fractions. But this
method is comparatively slow and not precise especially when
the total number of data samples is large. Compared with the mod-
els mentioned above, here, we propose a probability model for
unmixing the mixed pixels, which is similar to the fuzzy model
to some extent, but is more elaborate than it. The comparison be-
tween the proposed probability model and the fuzzy model will be
detailed in the following sections.

In this paper, we firstly introduce Bayesian self-organizing map
(BSOM) into the problem of the decomposition of mixed pixels, and
combine BSOM with Gaussian mixture model (GMM) to propose a
new unmixing algorithm. This algorithm contains two modules:
BSOM module and GMM module. The BSOM module is responsible
for estimating GMM parameters by minimizing the Kullback–Lei-
bler information metric. Because the chosen training samples for
parameters estimation in the BSOM module are always compara-
tively pure, the estimated variances are so small to bring about
large unmixing errors. To solve this problem, we propose a vari-
ance adjustment method based on the Gaussian probability distri-
bution rule (we call it ‘‘3r method”). In the GMM module, we first
adjust the estimated variances by extending the range of Gaussian
distributions with the ‘‘3r method”, and then do the unmixing
with the estimated and adjusted GMM parameters. The principle
diagram of our method is shown in Fig. 1.

The remainder of this paper is organized as follows: Section 2
introduces the BSOM algorithm which will be used in our method.
Section 3 details the proposed unmixing method which is based on
BSOM and GMM. In Section 4, some experimental results on both
simulated data and real hyperspectral remote sensing data are
shown. Conclusions are given in Section 5.

2. Bayesian self-organizing map

BSOM (Yin and Allinson, 2001; Yin and Allinson, 2001) pro-
posed recently is an algorithm which can be used to estimate the
parameters of GMM (Zhuang et al., 1996; Zhou and Wang, 2006).

GMM uses the mixture of some Gaussian probability density
distributions to simulate the probability density curve with any
shape. We call every Gaussian probability density distribution a
Gaussian component, and suppose that there are K Gaussian com-
ponents mixed in GMM, so the total probability of the data sample
~x is

pð~xÞ ¼
XK

i¼1
pð~xj~mi;iÞpðciÞ; ð1Þ

where ~mi,
P

i and p(ci) are the mean vector, covariance matrix, and
prior probability of the ith Gaussian component, respectively. And
the conditional probability of ~x in the ith Gaussian component is

pð~xj~mi;
X

i

Þ ¼ 1

ð2pÞd=2j
P

ij
1=2 exp �1

2
ð~x� ~miÞT

X�1ð~x� ~miÞ
� �

;

ð2Þ

where d is the dimension of ~x. If we suppose
P

i ¼ diagðr2
i ;r2

i ; . . . ;

r2
i Þ ¼ r2

i I, then

pð~xj~mi;riÞ ¼
1

ð2pÞd=2ri

exp �ð
~x� ~miÞTð~x� ~miÞ

2r2
i

( )
: ð3Þ

According to the Bayesian formula, the posterior probability can be
described as

pðcij~x; ĥiÞ ¼
pð~xjĥiÞp̂ðciÞPK
i¼1pð~xjĥiÞp̂ðciÞ

¼ pð~xjĥiÞp̂ðciÞ
p̂ð~xÞ ; ð4Þ

where ĥi ¼ ½~̂mi; r̂i� and p̂ðciÞ are estimated GMM parameters andXK

i¼1
pðcij~x; ĥiÞ ¼ 1; ð5Þ

pðcij~x; ĥiÞ 2 ½0;1�: ð6Þ

To estimate GMM parameters, we introduce the BSOM algorithm
which performs better than the traditional expectation maximize
(EM) algorithm (Moon, 1996; Bilmes, 1998) at both convergence
speed and escape of local minimum. The BSOM algorithm estimates
GMM parameters by minimizing the Kullback–Leibler information
metric defined as

I ¼ �
Z

ln
p̂ð~xÞ
pð~xÞ

� �
pð~xÞd~x: ð7Þ

For the parameter estimation of probability model, the Kullback–Lei-
bler information metric represents the average information which re-
sides in every training data sample after estimation. So it is always
non-negative, and equates to 0 only if the estimated model accords
with the real model perfectly, which is only an ideal circumstance.

By minimizing I, we get updating formulas of the BSOM algo-
rithm as follows:

~̂miðnþ 1Þ ¼ ~̂miðnÞ þ aðnÞpðcij~xðnÞ; ĥiÞð~xðnÞ � ~̂miðnÞÞ; ð8Þ
r̂2

i ðnþ 1Þ ¼ r̂2
i ðnÞ þ aðnÞpðcij~xðnÞ; ĥiÞ

� f½~xðnÞ � ~̂miðnÞ�T½~xðnÞ � ~̂miðnÞ� � r̂2
i ðnÞg; ð9Þ

p̂iðnþ 1Þ ¼ p̂iðnÞ þ aðnÞfpðcij~xðnÞ; ĥiÞ � p̂iðnÞg; ð10Þ

(8) and (9) for i 2 gr, and (10) for all i, where a (n) is the instantaneous
learning rate and gr is the updating area similar to the neighborhood
area of the self-organizing map (SOM) neural network (Guo and For-
ster, 1994; Lee and Lathrop, 1992). Here, the neighborhood function
in the SOM is replaced by the posterior probability pðcij~x; ĥiÞ. So, for
the BSOM network, every node composes of a mean vector, a vari-
ance and a prior probability, while the SOM network represents its
node only by a vector. The details of the mathematical derivation
about the formulas (8)–(10) can be found in the Appendix.

For every input training sample~x, we judge the node with highest
posterior probability to be the winner node. Then we update the
mean vectors and the variances of the nodes in updating area gr

according to (8) and (9), and update the prior probabilities of all
nodes according to (10) to satisfy the constraint described as follow:

XK

i¼1

p̂ðciÞ ¼ 1: ð11Þ

All nodes updating according to (8)–(10) is feasible, and moreover,
the introduction of gr can reduce computation time very much.

3. The proposed unmixing method

3.1. The unmixing scheme based on BSOM and GMM

Our unmixing algorithm is based on the assumption that the data
samples have a probability distribution described by GMM. Suppose

Fig. 1. Principle diagram.
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