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1. Introduction

Surface energy, one of the basic quantities in surface science,
plays an important role in several physical and chemical processes
such as fracture, catalysis, crystal growth, etc. However, surface
energies are difficult to determine experimentally and just few
data exist [1–4]. Some of these experiments are performed at high
temperatures and contain uncertainties of unknown magnitude
[1,2]. Some of the experimental surface energy data [3,4] stem
from surface tension measurements in the liquid phase extra-
polated to 0 K [5]. Recently, Bonzel and Edmundts [6,7] have
shown that analyzing the equilibrium shape of crystallites at
various temperatures by scanning tunneling microscopy can yield
absolute values of the surface energies versus temperature, but
this technique has not yet been widely applied. Therefore, to
determine the surface energy theoretically is very important.

Early theoretical calculations were based on perturbation
theory [8] or non-perturbative variational method [9]. In the last
few years, there have been several methods to calculate the surface
energy of metals using either the first-principles calculations
[5,10–21], or semi-empirical methods [22–34]. However, most
first-principles methods are computationally demanding and have
typically been used only for particular cases, focusing on a few
elements or on a special application for a given metal surface. And
most semi-empirical methods are based on some existent
experiment results, and do much more approach, and usually

use fitted parameters, focusing on a few systems which have some
needed parameters and functions.

The starting point of our surface model is the valence electron
structure (VES) calculated by the empirical electron theory in solid
and molecule (EET) [35–38] established by Yu. And a brief
introduction of EET is given in Appendix A.

2. Summary of the EET surface model

The main objective in the present study will be the first
evaluation of the surface energy of hexagonal close-packed (hcp)
metals from their VES by utilizing the number and the type of the
dangling bonds on particular crystal surface based on the dangling
bond analysis method (DBAM). And the VES, which refers to the
bond names, the bond lengths, the covalent electron numbers
(valence electron distribution), and so on, can be deduced by the
bond length difference (BLD) [37,38]. And in the latter section the
VES of hcp-metals can be calculated.

Surface energy is one of the most important static physical
quantities characterizing metal surface. And the surface energy is
defined as the additional value of the free energy per unit area of
particular crystal surface, therefore, the surface energy of
particular crystal surface is given by the below expression

g ¼ DE

DS
(1)

where DE represents the additional value of the free energy with
the forming of new surface; DS is the added area of the crystal
surface.
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A B S T R A C T

A brief introduction of the surface model based on the empirical electron theory (EET) and the dangling

bond analysis method (DBAM) is presented in this paper. The anisotropy of spatial distribution of

covalent bonds of hexagonal close-packed (hcp) metals such as Be, Mg, Sc, Ti, Co, Zn, Y, Zr, Tc, Cd, Hf, and

Re, has been analyzed. And under the first-order approximation, the calculated surface energy values for

low index surfaces of these hcp-metals are in agreement with experimental and other theoretical values.

Correlated analysis showed that the anisotropy of surface energy of hcp-metals was related with the

ratio of lattice constants (c/a). The calculation method for the research of surface energy provides a good

basis for models of surface science phenomena, and the model may be extended to the surface energy

estimation of more metals, alloys, ceramics, and so on, since abundant information about the valence

electronic structure (VES) is generated from EET.
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When all bonds between two nearest crystal planes were
broken, the two nearest crystal planes form two new crystal
surfaces. Therefore the energy requirement for the procedure is
just the additional free energy.

DE ¼
X
a

Id
aEa (2)

where a represents bond name; Ea represents the bond energy of a
bond; and Id

a is the equivalent dangling bond number of a bond on
particular crystal plane, whose value is determined with DBAM.

In EET, according to the bond energy formula [38,39], the bond
energy Ea can be calculated from the VES of hcp-metals. Therefore,
the key of this surface energy model is calculation of VES and the
DBAM.

3. Calculation of VES and bond energy of the hcp-metals

The hcp-metals, the conventional crystal cell is showed in Fig. 1
and the solid lines indicate the primitive crystal cell, and the lattice
constants (a and c) are shown in Table 1, belong to the A3 type
crystal structure. And the atom coordinates are (0, 0, 0) and (1/3, 2/
3, 1/2). So the experiment bond lengths which cannot be neglected

can be obtained: DA = a, DB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2=3þ c2=4

p
, DC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4a2=3þ c2=4

p
,

DD = c, DE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7a2=3þ c2=4

p
, DF ¼

ffiffiffi
3
p

a, DG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ c2
p

.

In perfect crystals (c=a ¼ 2
ffiffiffi
2
p

=
ffiffiffi
3
p
� 1:633), DA = DB, and

DE = DF. For those hcp-metals with the parameters a and c not
corresponding to idealization, if c/a > 1.633, then DA < DB, and
DE > DF. If c/a < 1.633, then DA > DB, and DE < DF. And the bond
length calculation results are shown in Table 2. The equivalent
bond number of the bonds can be calculated with the formula [35–
38,40].

Ia ¼ IMISIK (3)

where IM represents the reference atom number in the structure or
the molecule; IS represents the equivalent bond number for a
reference atom to form a bond; IK is a parameter, which equals 1
when the two atoms that form the bond are of the same kind or 2
when the two atoms are of different kinds. Therefore, the
equivalent bond numbers of a bond are: IA = 2 � 6 � 1 = 12,

IB = 2 � 6 � 1 = 12, IC = 2 � 6 � 1 = 12, ID = 2 � 2 � 1 = 4, IE = 2 �
12 � 1 = 24, IF = 2 � 6 � 1 = 12, IG = 2 � 12 � 1 = 24.

According to the Pauling bond length formula in EET [35–38]:

Da ¼ 2Rð1Þ � b lg na (4)

where Da (a = A, B, . . ., G) represents the bond length; R(1)
represents the single bond radius of the atom which form the
bond; na represents the number of covalent electron pairs on the
bond; and b is a factor whose value is determined with formula
(A8) in Appendix A. Therefore, the following ra0 (a0 = B, C. . .)
equation can be obtained:

lg ra0 ¼ lgðna0=nAÞ ¼ ðDA � Da0 Þ=b

Therefore,

X
Ir ¼ IA þ

Xa0¼G

a0¼B

Ia0 ra0

Fig. 1. Crystal cell of hcp-metals.

Table 2
The bond length calculation results of hcp-metals.

hcp-metal/nm DA DB DC DD DE DF DG

Be 0.22856 0.222512 0.318985 0.35832 0.392417 0.395878 0.425009

Mg 0.32094 0.319699 0.453001 0.52105 0.555169 0.555884 0.61196

Sc 0.3308 0.325246 0.463911 0.52653 0.569774 0.572962 0.621822

Ti 0.29506 0.289393 0.41329 0.46788 0.507808 0.511059 0.553147

Co 0.2507 0.249684 0.353826 0.4069 0.433639 0.434225 0.477931

Zn 0.26649 0.291289 0.394799 0.49468 0.476323 0.461574 0.561894

Y 0.36451 0.355508 0.509169 0.57305 0.626196 0.63135 0.679157

Zr 0.32312 0.317882 0.453272 0.51477 0.556653 0.55966 0.607778

Tc 0.2735 0.270315 0.384542 0.4388 0.471884 0.473716 0.517057

Cd 0.29788 0.329311 0.444048 0.56167 0.534706 0.515943 0.635772

Hf 0.31946 0.312734 0.447054 0.50511 0.549465 0.553321 0.597654

Re 0.276 0.274001 0.388912 0.4458 0.476895 0.478046 0.524322

Table 1
The lattice constants of hcp-metals.

hcp-metal a1 = a2 = a/nm c/nm c/a hcp-metal a1 = a2 = a/nm c/nm c/a

Be 0.22856 0.35832 1.568 Y 0.36451 0.57305 1.572

Mg 0.32094 0.52105 1.624 Zr 0.32312 0.51477 1.593

Sc 0.3308 0.52653 1.592 Tc 0.27350 0.4388 1.604

Ti 0.29506 0.46788 1.586 Cd 0.29788 0.56167 1.886

Co 0.25070 0.40690 1.623 Hf 0.31946 0.50511 1.581

Zn 0.26649 0.49468 1.856 Re 0.27600 0.44580 1.615
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