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a b s t r a c t

In this paper, we propose a robust fuzzy clustering algorithm, based on a fuzzy treatment of finite mix-
tures of multivariate Student’s-t distributions, using the fuzzy c-means (FCM) algorithm. As we experi-
mentally demonstrate, the proposed algorithm, by incorporating the assumptions about the
probabilistic nature of the clusters being dirived into the fuzzy clustering procedure, allows for the
exploitation of the hard tails of the multivariate Student’s-t distribution, to obtain a robust to outliers
fuzzy clustering algorithm, offering increased clustering performance comparing to existing FCM-based
algorithms. Our experimental results prove that the proposed fuzzy treatment of finite mixtures of Stu-
dent’s-t distributions is more effective comparing to their statistical treatments using EM-type algo-
rithms, while imposing comparable computational loads.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Fuzzy c-means (FCM) clustering has been successfully em-
ployed in a wide variety of fields and has demonstrated a high
degree of adaptation to different data sets (Pedrycz, 2002; Kauf-
man and Rousseeuw, 1990; Dumitrescu et al., 2000). The FCM algo-
rithm is an extension of the k-means algorithm (the hard c-means
algorithm) and was first introduced in (Dunn, 1974) and general-
ized in (Bezdek, 1981), where the notion of the degree of fuzziness,
taking values not less than one, is introduced. Fuzzy c-means
(FCM) and its derivatives have been shown to be closely related
to Gaussian mixture models (GMMs) in the algorithmic framework
(Gath and Geva, 1989; Miyamoto and Mukaidono, 1997; Hath-
away, 1986). Finite Gaussian mixture models (GMMs) are widely
used in statistical pattern recognition and classification applica-
tions (McLachlan and Peel, 2000); they provide an appealing alter-
native to nonparametric density estimators for the approximation
of unknown distributions, including distributions with multiple
modes (Parzen, 1962). In (Hathaway, 1986), the expectation-max-
imization (EM) algorithm for GMMs is interpreted as a penalized
version of the hard c-means clustering algorithm. In (Gath and
Geva, 1989), an exponential distance for the FCM algorithm is de-
fined to obtain a fuzzy clustering-based, FCM-type alternative to
the EM algorithm for GMMs (Gath–Geva algorithm).

Despite the popularity of GMM-based or GMM-related para-
metric models, they have the major limitation of being extremely
sensitive to outliers. Providing robustness to outlying data is cru-
cial in many practical applications, where outliers comprise a sig-
nificant proportion of the observable data, since they might affect
severely the estimation of the model parameters as well as the
model complexity, requiring additional components to capture
the tails of the distribution (Kosinski, 1999). To mitigate this prob-
lem, in (Dave and Krishnapuram, 1997), the Noise Clustering (NC)
method is proposed, which comprises the introduction of an extra
cluster to represent the outliers. Even though the NC and related
methods have become popular tools to provide protection to out-
liers in the context of fuzzy clustering techniques (Miyamoto and
Alanzado, 2002; Honda and Ichihashi, 2004; Tran and Wagner,
1999), their heuristic nature remains a significant drawback.

Mixtures of Student’s-t distributions (SMMs) have been pro-
posed recently as an alternative to GMMs, providing the effective,
non-heuristic means to mitigate the outlier vulnerability issues of
GMMs (Shoham, 2002; Peel and McLachlan, 2000). The Student’s-t
distribution is a bell-shaped distribution with longer tails and one
more parameter comparing to the normal distribution (the
so-called degrees of freedom) and it tends to a normal distribution
for big values of its degrees of freedom. This way, SMMs, exploiting
the hard tails of the Student’s-t distribution, provide a robust alter-
native to GMMs, allowing for the downweighting of the training
data outliers, by means of a model-inherent, non-heuristic, sound
statistical methodology.
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Motivated by the aforementioned observations, we introduce in
this paper a fuzzy clustering scheme, that exploits the merits of
mixtures of Student’s-t distributions to offer high robustness
against outliers in the context of fuzzy clustering techniques; we
obtain the fuzzy mixture of Student’s-t distributions model
(FSMM) and we provide an efficient treatment of it using the
FCM algorithm. We evaluate the efficacy of this novel fuzzy clus-
tering algorithm using real and synthetic data, and we compare
its classification performance with the performance of competing
fuzzy and statistical clustering techniques.

The remainder of this paper is organized as follows: Section 2
begins with an overview of mixtures of Student’s-t distributions;
further the fuzzy mixture of Student’s-t distributions model
(FSMM) is introduced. In Section 3, we provide an effective treat-
ment of the FSMM model using the FCM algorithm. In Section 4,
the experimental evaluation of our model is conducted. The final
section summarizes the results of this paper.

2. Model formulation

2.1. Student’s-t mixture models

Let us consider a p-dimensional random sample x1; . . . ;xn. One
way to broaden the normal distribution for potential outliers is to
adopt the two-component Gaussian mixture density

ð1� �ÞNðxj; l;RÞ þ �Nðxj; l; kRÞ ð1Þ

where, Nðl;RÞ stands for a normal distribution with mean l and
covariance matrix R, and k is large and � is small, representing
the small proportion of observations xj that have a relatively large
variance. The Gaussian scale mixture model (1) can be rewritten asZ

Nðxj; l;R=uÞdHðuÞ ð2Þ

where H is the probability distribution that places mass 1� � at the
point u ¼ 1 and mass � at the point u ¼ 1

k. Let us replace H with the
distribution of a v2 random variable on its degrees of freedom m;
that is, we replace H with the random variable u distributed as

u � G
m
2
;
m
2

� �
ð3Þ

where Gða;bÞ is the Gamma distribution, with probability density
function (pdf) Gðu; a;bÞ ¼ ua�1 bae�bu

CðaÞ . We have, hence, that,

pðxj; l;R; mÞ ¼
Z

Nðxj; l;R=ujÞdG uj;
m
2
;
m
2

� �
ð4Þ

where pðÞ is a generic notation for a probability function (pdf).
From (4), it follows that the observed data xjðj ¼ 1; . . . ;nÞ fol-

lows a multivariate Student’s-t distribution, with mean vector l,
positive definite inner product matrix R, and m degrees of freedom
(Liu and Rubin, 1995), i.e.,

xj � tðl;R; mÞ ð5Þ

with pdf

tðxj; l;R; mÞ ¼
C mþp

2

� �
jRj�1=2

ðpmÞp=2Cðm=2Þf1þ dðxj; l; RÞ=mgðmþpÞ=2 ð6Þ

where, dðxj; l; RÞ is the squared Mahalanobis distance between xj;l

with covariance matrix R

dðxj; l; RÞ ¼ ðxj � lÞTR�1ðxj � lÞ ð7Þ

and CðsÞ is the Gamma function, CðsÞ ¼
R1

0 e�tzs�1dz. From (4), it
also follows that (Liu and Rubin, 1995)

xjjuj �Nðl;R=ujÞ ð8Þ

where the scalar uj is distributed as

uj � G
m
2
;
m
2

� �
ð9Þ

Then, the pdf of a c-component mixture of Student’s-t distributions,
with weights w1; . . . ;wc , is given by (Peel and McLachlan, 2000)

pðxj; HÞ ¼
Xc

i¼1

wipðxj; HiÞ ð10Þ

where

pðxj; HiÞ ¼ tðxj; li;Ri; miÞ ð11Þ

and the parameter vector Hi consists of the elements of the li, and
Ri, along with the degrees of freedom mi, of the ith component dis-
tribution, and H ¼ fHi;wigc

i¼1.

2.2. Robust fuzzy clustering: the FSMM model

Each one of the component densities consisting a finite mixture
of multivariate Student’s-t distributions model, of the form (10),
can be viewed as representing a cluster in the space of observable
data. Concerning the a posteriori probability of the observation xj

deriving from the ith component distribution of the mixture model
(10), pðijxjÞ, it holds

0 6 pðijxjÞ 6 1;
Xc

i¼1

pðijxjÞ ¼ 1 ð12Þ

Following Ruspini (1969), Eq. (12) implies that these clusters can be
also considered as fuzzy sets; hence, the assumed mixture model
can be regarded as defining a fuzzy c-partition R of the space of
observations

R ¼ frijg ð13Þ

where rijði ¼ 1; . . . ; c; j ¼ 1; . . . ;nÞ represents the degree of the
observation xj, belonging to the cluster represented by the ith com-
ponent distribution. The function rij is called the fuzzy membership
function and has the following properties

0 6 rij 6 1;
Xc

i¼1

rij ¼ 1; 0 <
Xn

j¼1

rij < n ð14Þ

Under these considerations, the FSMM model is formulated. In the
following section, we provide a (fuzzy) treatment of the FSMM
model using the FCM algorithm.

3. FSMM parameters estimation: an FCM-based algorithm

The standard objective function minimized by an FCM-based
fuzzy clustering algorithm (Gustafson and Kessel, 1979) is of the
form

J/,
Xc

i¼1

Xn

j¼1

r/
ij dij ð15Þ

where, dij is the dissimilarity between the jth data point and the ith
cluster prototype, and / P 1 is a weighting exponent on each fuzzy
membership function, rij, and is called the degree of fuzziness of the
fuzzy clustering algorithm. Therefore, to conduct the FCM treat-
ment of the FSMM model, we need first to define a suitable dissim-
ilarity function, dij, taking into account the assumed probabilistic
nature and the properties of the clusters (mixture components)
being derived. Following Gath and Geva (1989), a suitable dissimi-
larity function, meeting these requirements, is

dij,� log½wipðxj; HiÞ� ð16Þ
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