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a b s t r a c t

In this paper, a newly semi-supervised manifold learning algorithm named Discriminative Sparse
Manifold Regularization (DSMR) is proposed. In DSMR, the whole unlabeled sample set is used to re-
construct the mean vector of each class, then obtains the sparse coefficient. For each sample of labeled
samples, the new dictionary is composed of samples from the same class and the samples from the
unlabeled sample set according to the corresponding rows of the sparse coefficient. For each unlabeled
sample, the new dictionary is composed of samples from the whole unlabeled samples and the samples
from the labeled class according to the corresponding columns of the sparse coefficient. Additionally, a
discriminative term is added to stabilize performance of the algorithm. Extensive experiments on the
several UCI datasets and face datasets demonstrate the effectiveness of the proposed DSMR.

& 2016 Published by Elsevier B.V.

1. Introduction

Classification is one of the fundamental problems in many
scientific fields [1]. The goal of classification is to separate different
classes as far as possible. During the past decades, many algo-
rithms for classification have been proposed [8–10]. Classification
functions of these algorithms are obtained by minimizing the
empirical prediction loss functions.

In the real world, data tend to have very high dimension, but
many researches have demonstrated that the performance of
classifier will decline with the dimension increase. Thus, in order
to improve the performance of classifier and reduce the compu-
tational load, many feature extraction algorithms have been pro-
posed. Among these algorithms, global Euclidean structure based
algorithms are proposed, such as Principal Component Analysis
(PCA) [2,3] and manifold structure based algorithms, such as Iso-
metric Feature Mapping (ISOMAP) [4], Local Linear Embedding
(LLE) [5], Laplacian Eigenmap (LE) [6] and Locality Preserving
Projections (LPP) [7] are proposed. After feature extraction, clas-
sification algorithms, such as Linear Discriminant Analysis (LDA)
[8], Constrained Maximum Variance Mapping (CMVM) [9] and
Multi-Manifold Discriminant Analysis (MMDA) [10], can be im-
plemented to obtain the classification results.

The classification algorithms mentioned above are supervised
algorithms they will perform well when there are enough labeled
samples, but in the real world, it is difficult to get enough labeled

samples. In this way, semi-supervised learning algorithms have
attracted many researchers' interest [11,12]. Among these semi-
supervised learning algorithms, graph based semi-supervised
learning algorithms also known as semi-supervised manifold
learning algorithms are widely used since their good performance.

In semi-supervised manifold learning algorithms, a graph is
constructed to character the distribution of all samples. The tra-
ditional methods including K nearest neighbor (KNN) based
methods and ε-ball based methods [13]. In general, these algo-
rithms construct the graph in two main steps, firstly, choosing the
samples needed to connected, secondly, determining the edges
weights. However, these semi-supervised manifold learning algo-
rithms have a common drawback: how many samples need to be
connected. However, there are no specific solutions to solve it.

The semi-supervised manifold learning algorithms have two
common assumptions: cluster assumption and manifold assump-
tion. The cluster assumption indicates that if two samples are lo-
cated in the same cluster, they have high probability to belong to
the same class. The manifold assumption indicates that the high-
dimensional data reside on a low-dimensional sub-manifold.
However, many semi-supervised manifold learning algorithms
may connect samples from different classes in the cluster
boundaries because they do not use the discriminative informa-
tion or the labeled samples information when constructing the
graph.

In order to overcome the shortcomings of traditional semi-su-
pervised manifold learning algorithms, a newly semi-supervised
learning algorithm named Discriminative Sparse Manifold Reg-
ularization (DSMR) is proposed. The graph in DSMR is constructed
through sparse representation (SR) and with SR, following
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advantages are achieved:

(1) The graph constructed in DSMR relies on sparse representa-
tion [14], which is generally superior to KNN or ε-ball,
especially for high-dimensional data.

(2) Parameter free. The neighborhood size K or the radius ε and
the edge weight for each sample, which are hard to determine
in traditional semi-supervised manifold learning algorithms,
are automatically established by SR. In fact, it is unreasonable
to believe that all samples of different classes have the same
parameter for KNN or ε-ball based method. However, through
SR, different samples will have different neighborhood size K
or the radius ε and the edge weight, which is more adaptive
for unknown high-dimensional data distribution.

(3) Robust to noise. The graph constructed by KNN or ε-ball based
method is sensitive to data noise, especially for high-dimen-
sional data. However, SR has shown its robustness in [14] and
experimental results in this paper have verified this point.

(4) Naturally discriminative. Discriminative information is im-
portant for classification. However, many semi-supervised
manifold learning algorithms only focus on the smoothness of
manifold and ignore the discriminative information. SR has
natural discriminative power and can work well for high-di-
mensional data [15] and experimental results in this paper
have verified this point.

The organization of this paper is organized as follows. In Sec-
tion 2, the semi-supervised manifold learning algorithms and SR
are introduced. In Section 3, the motivation and implement of
DSMR are introduced in detail. In Section 4, experiments are
conducted on several UCI datasets and face image datasets and we
analyze the relationship of the proposed DSMR and other algo-
rithms. Conclusion of this paper is made in Section 5.

2. Related works

Our work is closely related to the semi-supervised manifold
learning algorithms and SR. Now we introduce them in detail.

2.1. Semi-supervised manifold learning algorithms

Semi-supervised manifold learning algorithms can make full
use of all samples to explore the underlying geometric structure
and get better results. It can be used in many areas, such as image
annotation [16], medical diagnosis [17] and classification
[20,35,13]. Cai et al. use the labeled samples to maximize the
discriminating power and use the unlabeled samples to estimate
the intrinsic geometric structure of the samples in SSDA [18].
However, in SSDA the label information is ignored when con-
structing the graph. Belkin et al. introduce the underlying samples
distribution information of manifold structures into the traditional
regularization and get Manifold Regularization (MR) [19]. MR has
two regularization terms, one regularization term controls the
complexity of the classifier, and the other one controls the com-
plexity, which is measured by the manifold geometry of the
samples distribution. On the basis of MR, many semi-supervised
manifold regularization algorithms have been proposed, such as
Wu et al. combine the MR and a discriminative term get Semi-
supervised Discriminant Regularization (SSDR) [20], Zhao et al.
combine the MR and local and global regression get Learning from
Local and Global Discriminative Information (LLGDI) [21] and Local
and Global Regression (LGR), Fan et al. combine the MR and sparse
representation get Sparse Regularized Least Square Classification
(S-RLSC) [23], Gu et al. also combine the MR and sparse re-
presentation get Discriminant Sparsity Preserving Projection

(DSPP) [36].
The traditional semi-supervised manifold learning algorithms

only focus on the smoothness of the manifold and ignore dis-
criminative information. However, the discriminative information
or label information is helpful to remove the edges link samples
from different classes. By exploring the discriminative information,
the proposed DSMR has the ability to characterize the whole
manifold structure of all samples and gets more accurate results.

2.2. Sparse representation

Recently, sparse representation (SR) has attracted a great deal
of attentions due to its success in improving the performances of
various machine learning algorithms, such as classification [24],
image super-resolution [25,26], image de-noising [27], feature
extraction [28,29], signal reconstruction [30].

Given a set of samples = [ ⋯ ] ∈ *X x x x R, , , n
T m n

1 2 , where n is the
number of samples and m is dimensional of each sample. The aim
of SR is to reconstruct each sample xi using as few samples in X as
possible. The objective function of SR can be described as:
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,1 , 1 , 1 , is a n-dimensional column vector
with the ith element equal zero, which states that the xi is re-
moved from X, other elements in si denote the contribution of xj
for reconstructing xi. Unfortunately, the solution of Eqs. (1) or (2) is
a NP-hard problem. If we use l1 instead l0, the solution of Eqs. (1)
or (2) can be solved by LASSO [31] or LARS [32]. In this paper,
SPAMS (Sparse Modeling Software) [33,34] is used to solve the
problem. After obtaining all optimal reconstruction coefficient si
for each xi, then the sparse matrix S is constructed by

= ⋯ ( )⎡⎣ ⎤⎦S s s s, , , 3n1 2

Then, the new constructed graph is G¼{X, S}, where X is the
training samples set and S is the sparse matrix.

3. DSMR

In this section, we elaborate on the motivation and the detail of
DSMR.

3.1. Motivation of DSMR

MR provides a framework for semi-supervised manifold
learning algorithms, but MR ignores the discriminative informa-
tion and its graph is hard to construct. SR is a good solution to
solve it. In Sparse Neighborhood Preserving Embedding (SNPE)
[35], SR is used to preserve the local structure of manifold. The
objective function of SNPE is shown in Eq. (4).
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where w is the projection matrix. The objective function can be
simplified to Eq. (5) with simple algebraic formulation.
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