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a b s t r a c t

In this paper, a robust blind image watermarking scheme with a good rate distortion-
robustness tradeoff is proposed by adopting both Tucker Decomposition (TD) and
Adaptive-Lattice Quantization Index Modulation (A-LQIM). Inspired by the good proper-
ties provided by TD, such as content-based representation and stable decomposition
under distortions, the core tensor of TD is computed from the host image to carry
watermarks. The two coarsest coefficients in each frontal slice of the core tensor are
considered as a host vector, into which one watermark bit is embedded by using Lattice
Quantization Index Modulation (LQIM). In order to further improve the watermarked
image quality, an A-LQIM method is proposed to control the embedding strength on each
host vector by approximately minimizing the Structural SIMilarity (SSIM)-measured
perceptual distortion. Optimal parameters for each embedding are obtained according to
the host image. Experimental results have demonstrated that the proposed scheme pro-
vides high robustness against common attacks without degrading the image quality
compared with state-of-the-art schemes.

& 2015 Published by Elsevier B.V.

1. Introduction

Digital watermarking can be applied to protect the
copyright or verify the content of multimedia such as
images and video. This paper focuses on robust image
watermarking, which embeds information into images
without causing perceptual degradation, while ensuring
a considerable resistance to various unintentional dis-
tortions and malicious channel attacks. Such a water-
marking scheme should achieve high robustness and

imperceptibility simultaneously. Consequently, a good
design needs to carefully handle the tradeoff between
these two requirements.

Broadly, watermarks are often embedded in two types of
domains: spatial and transform domains. Benefiting from the
higher robustness, the latter type, such as Discrete Cosine
Transform (DCT) [1], Finite RIdgelet Transform (FRIT) [2], and
Discrete Wavelet Transform (DWT) [3–5], is preferred in the
literature. Unlike the transforms mentioned above, Singular
Value Decomposition (SVD) is content-dependent, which
alleviates the degradation of image quality caused by image
processing [6]. However, SVD is sensitive to noise. As a result,
SVD-based watermarking schemes are often fragile (e.g., [7]).
Some approaches try to employ side information to improve
robustness (e.g., [8,9]), which, however, limits their
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applications in practice. Moreover, mistakenly sharing infor-
mation may incur a high false positive [10,11].

As generalized versions of SVD, tensor decompositions
preserve SVD's characteristics such as content-dependence.
They have also been applied in watermarking on video
[12,13], color images [14,15], multispectral images [16], etc.
However, little attention has been paid to the characteristics
of tensor decompositions that benefit their applications in
watermarking. These schemes simply employ embedding
strategies similar to SVD-based schemes. As a result, they are
not blind. Some of them even suffer from the risk of high false
positives (e.g., [12,14,15]). There are two major tensor
decomposition methods: CANDECOMP/PARAFAC decomposi-
tion [17] and Tucker Decomposition (TD) [18]. It has been
shown that the former is unstable under even a small per-
turbation [19]. However, we find that the analytic solution of
the latter, known as High Order SVD (HOSVD) [20], is stable
under many attacks. Inspired by this new observation, a
robust and blind image watermarking scheme that adopts TD
is proposed.

Quantization Index Modulation (QIM) [21] is an impor-
tant tool for blind watermarking. It is usually extended to
the vector case by using sparse QIM or Lattice QIM (LQIM)
for a better performance [21,22]. Therefore, we choose the
vector QIM to embed watermark bits. The perceptual
adaptation is necessary for practical watermarking schemes
in order to achieve a better tradeoff between robustness
and imperceptibility. For this purpose, some QIM-based
approaches employed nonuniform quantization [23,24], or
perceptually shaped the projection vector in sparse QIM
[25]. However, these are few adaptive extensions for LQIM,
whereas LQIM is especially suitable for high dimensional
host vectors [26]. QIM usually employs distortion com-
pensation to improve the distortion-robustness tradeoff.
The Distortion Compensated-QIM (DC-QIM) can even
achieve an optimum performance with respect to the Mean
Square Error (MSE)-based measurement [21]. Inspired by
this, this paper introduces an Adaptive-LQIM (A-LQIM)
method to perceptually modulate distortion compensation
on individual host coefficients. In addition, the detector of
A-LQIM is blind and formed as simply as that in DC-LQIM.

In this paper, a novel TD-based image watermarking
scheme is proposed. The host image is folded and
decomposed by TD to generate a core tensor. Though this
manipulation reduces the correlation length of the image
in the 2 classical directions, it improves the stability of the
decomposition considerably. Then the two coarsest coef-
ficients in each frontal slice of the core tensor are
employed to embed one watermark bit, where the
embedding is performed by LQIM. Experimentally we find
that the blocking artifacts incurred by watermark
embedding can be captured well with the Structural
SIMilarity (SSIM)-based measurement [27]. Furthermore,
this measurement can be well approximated by the
weighted Sum of Squared Errors (wSSE). As a result, an
extension of LQIM, namely A-LQIM, is introduced to opti-
mize the local embedding strength according to wSSE. The
embedding parameters are also optimized according to the
host image. The embedded watermark can be blindly

extracted without knowledge (or estimated knowledge) of
the host image.

The rest of this paper is organized as follows. In Section 2,
the generation of cover in the tensor decomposition domain
is introduced and some new characteristics of the tensor
decomposition employed are discussed. In Section 3, the
perceptual measurement is defined, based on which A-LQIM
is proposed. Section 4 optimizes the embedding parameters,
including the quantization radius and maximum self-noise,
and presents the designed watermarking scheme. Theoretical
analysis and experimental results are reported and discussed
in Section 5, which is followed by a conclusion drawn in
Section 6.

2. Cover in tensor decomposition domain

An L-th-order tensor means a data array in L dimen-
sions. By fixing all but two indices, we get the slices of a
tensor. For example, the horizontal, lateral, and frontal
slices can be obtained by fixing the first, second, and third
indices of a third-order tensor, respectively. The matrici-
zation of a tensor is the process of reordering the elements
of a tensor into a matrix, and the mode-k product of a
tensor with a matrix, denoted by �k, is defined as a matrix
multiplying the mode-k matricized tensor. More mathe-
matical definitions can be found in [19].

We consider a block-wise watermarking scheme and
construct a tensor that consists of image splits. The host
image is partitioned into non-overlapping blocks first.
Then these blocks are folded as frontal slices to construct a
third-order tensor. Assuming that the size of a block is
l1 � l2, an la � lb sized image can generate a tensor of size
l1 � l2 � l3 where l3 ¼ ⌊lal1c � ⌊lbl2c.

Given tensor TARl1�l2�l3 , tensor decomposition can be
employed to apply factor analysis [19]. There is no unique
way for tensor decomposition, of which a type of Tucker
Decomposition (TD) tries to find the factorization

T¼ C�1U1�2U2þE ð1Þ

where the factor matrices UkARlk�~lk ; ~lko lk; k¼ 1;2, are
the solution of

min
U1 ;U2 ;Ck

Xl3
k ¼ 1

Tk�U1CkU
T
2

��� ���2
F

s:t: UT
1U1 ¼ I~l1 ; UT

2U2 ¼ I~l2 ð2Þ

where J�JF denotes the Frobenius norm. Matrices TkARl1�l2

and CkAR
~l1�~l2 are the k-th frontal slices of tensors T and C,

respectively. Ck does not need to be diagonal. I~lk is the identity

matrix of size ~lk � ~lk. Factor matrices U1 and U2 span the
spaces of the horizontal and vertical directions, respectively,

and the core tensor CAR
~l1�~l2�l3 describes the correlation

among factor matrices, whose coefficients can be seen as the
Singular Values (SVs). The analytic solution of Eq. (2) is given

in [20], which also shows that, for any ~lko lk, TD provides the
best low rank approximation of T under Frobenius norm
metric.
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