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a b s t r a c t

Two undecimated forms of the Dual Tree Complex Wavelet Transform (DT-CWT) are
introduced together with their application to image denoising and robust feature
extraction. These undecimated transforms extend the DT-CWT through the removal of
downsampling of filter outputs together with upsampling of the complex filter pairs in a
similar structure to the Undecimated Discrete Wavelet Transform (UDWT).

Both developed transforms offer exact translational invariance, improved scale-to-
scale coefficient correlation together with the directional selectivity of the DT-CWT.
Additionally, within each developed transform, the subbands are of a consistent size. They
therefore benefit from a direct one-to-one relationship between co-located coefficients at
all scales and therefore this offers consistent phase relationships across scales. These
advantages can be exploited within applications such as denoising, image fusion,
segmentation and robust feature extraction. The results of two example applications
(bivariate shrinkage denoising and robust feature extraction) demonstrate objective and
subjective improvements over the DT-CWT. The two novel transforms together with the
DT-CWT offer a trade-off between denoising performance, computational efficiency and
memory requirements.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Discrete Wavelet Transform (DWT) has been used
extensively for analysis, denoising and fusion within image
processing applications [1–12]. It has been recognised that
the DWT suffers from shift variance [13–15]. Variations on
the DWT have been developed (e.g. cycle spinning intro-
duced by [16]) to produce a shift invariant form. Exact shift
invariance has been achieved using the Undecimated Dis-
crete Wavelet Transform (UDWT). However, the UDWT
variant suffers from a considerably over-complete represen-
tation together with a lack of directional selectivity. More
recently, the Dual Tree Complex Wavelet Transform (DT-
CWT) has offered a more compact representation while

providing near shift invariance. The DT-CWT also offers
improved directional selectivity (6 directional subbands
per scale) and complex valued coefficients that are useful
for magnitude/phase analysis within the transform domain.

Although overcomplete by a factor of two, the DT-CWT is
still a compact transform (due to the downsampling at each
level of the transform). However, non-compressive applica-
tions (such as denoising and fusion) do not require compact
transforms and may benefit from overcomplete representa-
tions. Furthermore, not only does the Primary Visual Cortex
(V1) contain filters that resemble 2D DT-CWT basis functions,
it has been noted that the output from V1 is significantly
overcomplete [17] (approximately 25:1 in area 17 [18]).

This paper proposes two undecimated forms of the DT-
CWT which combine the benefits of the UDWT (exact
translational invariance, a one-to-one relationship between
all co-located coefficients at all scales) and the DT-CWT
(improved directional selectivity and complex subbands).
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This paper builds on the previous work by Hill et al. [19]
adding a second undecimated transform (U2DTCWT), a
detailed analysis of both transforms, and a comprehensive
list of additional results.

Firstly, the undecimated filter structure of the UDWT is
introduced in Section 2. This filter structure is then applied
to the DT-CWT decomposition to give the two forms of the
undecimated DT-CWT as also described within Section 2.
The shift invariance, generalisation to two dimensions and
cross scale correlation of the developed transforms are
then investigated in Sections 3.1, 3.2 and 3.3 respectively.
Two applications of the transforms are described in
Sections 4 and 5. Finally, a comparison of transforms and
conclusion are presented in Sections 6 and 7 respectively.

2. Undecimated Wavelet Transforms

The undecimated form of the Discrete Wavelet Trans-
form has been independently developed by numerous
researchers separately referred to as “algorithme a trous”
[14], the “Shift Invariant DWT (SIDWT)” [13], the “Stationary
Wavelet Transform (SWT)” [20] and “Discrete Wavelet
Frames (DWFs)” [15]. An overview of these separate devel-
opments is given by Fowler [21].

Defining the scaling and wavelet filters of an orthonormal
DWT as hAℓ2ðZÞ and gAℓ2ðZÞ respectively, the undeci-
mated wavelet filter (g) at scale lþ1 is defined recursively as

gðlþ1Þ k
� �¼ gðlÞ k

� �
↑2¼ gðlÞ k

2

� �
if k even

0 if k odd

(
ð1Þ

where the filter hðlþ1Þ is similarly defined. The downsam-
pling at each stage of the DWT is removed to give the UDWT.
The shift variation of the DWT, referred to earlier, is caused
by this subsampling; its removal within the UDWT provides
perfect shift invariance. It should be noted that each subband
is now the same size as the original signal, leading to a
considerably over-complete representation.

2.1. The Undecimated Dual Tree Complex Wavelet Transform
type 1: U1DT-CWT

Although the UDWT is exactly shift invariant, it lacks
directionality and has only real coefficients for analysis
and processing. Kingsbury [2,22,23] formulated the Dual
Tree Complex Wavelet Transform (DT-CWT) to provide
near shift invariance and improved directionality with a
more compact representation. The structure of the DT-
CWT uses two separate trees to form Hilbert filter pairs
within each subband. The magnitude response of this pair
of filters is very close to being shift invariant. Another
benefit of this transform is improved directional resolution
(in the two dimensional version). These properties have
underpinned excellent results in denoising, fusion and
other image processing applications (e.g. [3,5,7]).

In common with conventional wavelet transforms, the
size of the subbands in the DT-CWT decreases in octave
steps as the scale of the transform increases. This provides
a trade-off between resolution and redundancy at each
level. However, this does not lead to a one-to-one relation-
ship between co-located coefficients across scales. Cross

scale relationships are exploited in segmentation, fusion
and denoising applications (e.g. [24,25]). The correlation
between a coefficient and its parent is utilised within each
of these applications.

Although subsampling is justified for compression appli-
cations, the subsampled subbands of the DT-CWT have a
restricted number of coefficients directly related to each
spatial position in the signal or image, a relationship that
often conflicts with the requirements of analysis applica-
tions [25]. To enable such analysis we now define an
undecimated form of the DT-CWT, the U1DT-CWT, where
each subband has the same resolution as the signal. As the
U1DT-CWT contains no subsampling it exhibits perfect shift
invariance. It also offers a one-to-one relationship between
all co-located coefficients and the original samples and
between co-located coefficients across all subbands.

The U1DT-CWT analysis stage is shown in Fig. 1. Filters
at each stage are based on the filters used in the DT-CWT.

� Any perfect reconstruction bi-orthogonal set of filters
can be used for the first level. The filters of one tree
(g00; g01) are exactly the same as the other tree
(h00;h01) but offset by one sample. These filters are
not upsampled using the method illustrated by (2)
(they do not need to take into account a previous
level's subsampling).

� All subsequent filters in both trees are based on the
Q-shift filters defined in [2].

The subsampling of the DT-CWT has been removed as ind-
icated by the crosses in Fig. 1. To offset this effect at the second
and subsequent levels, each of the Q-shift filters is itself
upsampled (i.e. zeros are inserted between filter coefficients).

For example, the Q-shift filter g10 in the U1DT-CWT at
stage lþ1 is defined recursively (similarly to (1) for the
UDWT) as

g1ðlþ1Þ
0 k

� �¼ g1ðlÞ
0 k
� �

↑2¼ g1ðlÞ
0

k
2

� �
if k even

0 if k odd

(
ð2Þ

where g1ð1Þ
0 is the original (non-upsampled) Q-shift filter.

The other upsampled filters (at stage lþ1: g1ðlþ1Þ
1 , h1ðlþ1Þ

0
and h1ðlþ1Þ

1 ) in Fig. 1 are similarly defined (and for all
subsequent stages). The synthesis stage of the whole

Fig. 1. The analysis stage of the U1DT-CWT. The crosses indicate the
positions where downsampling would normally occur within the deci-
mated DT-CWT.
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