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Abstract

The possible manifestations of thermodynamical instability (explosive vaporisation) are discussed for different regimes of laser heating of the

metal/transparent liquid system. The present calculations show that the explosive vaporisation in the metastable region may occur if the nucleation

rate is high enough. This condition is achievable if the surface tension of the superheated liquid tends to zero near the spinodal. It is also

shown that the dependence of the phase explosion time on laser intensity markedly changes its behaviour when the water temperature reaches

the spinodal.
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1. Introduction

Superheated or supercooled states are one of the character-

istic features of the first-order non-equilibrium phase transi-

tions. The phase transition of a superheated metastable liquid

into vapour is accompanied by a sharp pressure increase and for

this reason called ‘‘explosive boiling’’ [1]. A deep enough

penetration into the metastable region is the condition for the

explosive boiling to occur. It may be achieved, for instance, by

increasing the temperature, while the pressure remains constant

or changes insignificantly (see ref. [2] and references therein).

Since the upper and lower metastability boundaries (binodal

and spinodal) depend on pressure, penetrating into the

metastable region can be also realized by a pressure drop at

a relatively constant temperature [3,4]. Fast heating of a liquid

is unavoidably associated with the pressure increase. That is

why the temperature rise as well as the pressure decrease (after

its initial increase) under pulsed laser action can provoke the

explosive boiling [5]. Different modes of explosive boiling over

a large range of laser intensities and pulse durations were

discussed in several papers [6–15]. Nevertheless, as far as we

know, a comprehensive analysis of explosive boiling has not yet

been carried out. For example in ref. [8] devoted to

experimental investigation of the mercury boiling-up in an

optoacoustic cell under laser irradiation of its surface, the

superheated metastable states are mentioned, but along with

this, the authors locate the mercury boiling-up process at the

contact surface with the glass on the binodal. In ref. [10] the

possibility of appearance of a superheated metastable state in a

transparent liquid in the vicinity of the laser-heated substrate

surface is not treated.

In the present paper, the conditions for realisation of the

explosive boiling are considered, depending on the laser pulse

intensity and duration.

2. Mathematical model

It is suggested that the substrate thickness l1 and the

thickness of the adjacent transparent liquid layer l2 are large

enough as against the spatial length of the generated acoustic

pulses. In this case, the temperature and pressure behaviour of

the liquid/substrate system can be described by a complete

system of hydrodynamic equations for the substrate and the

liquid located in the right-hand z > 0 and in the left-hand side

z < 0, respectively. Linear approximations of the continuity,
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Euler and energy equations [7] are applied to obtain analytical

expressions for the pressure signals
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where P, r, T, s and v represent the pressure, density, tempera-

ture, entropy and velocity perturbations related to their unper-

turbed values P0, r0, T0, s0 and v0 = 0, while k, a and I are the

thermal conductivity and absorption coefficients and the

absorbed radiation intensity I = I0(t) e�az, respectively.

It is obtained directly from Eqs. (1) and (2) that
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since, accordingly to the state equation r = r(P, s) and Eq. (2)
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where vs is the sound velocity in the medium v2
s ¼ @P

@r

� �
s
, cP the

heat capacity at constant volume and e ¼ � 1
r0

@r
@T

� �
P

is the

matter thermal expansion coefficient. In deriving Eq. (4) it

was taken into account that
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If the thermal penetration depth into the substrate z1

achieved in one laser pulse t (defined by the absorption length 1/

a or the temperature influence
ffiffiffiffiffiffi
xt
p

as z1 = max(1/a,
ffiffiffiffiffiffi
xt
p

),

where x is the temperature conductivity coefficient) turns out to

be small compared to the characteristic wavelength z2 ¼ vst of

the generated acoustic pulse, matter density variation under

pressure (term 1
v2

s

@2P
@t2

in Eq. (3)) in the heated zone may be

neglected. In this limit, the expression for the pressure P(z, t) in

the region z1 � z* � z2 follows from Eq. (3):
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In deriving Eq. (6), it was assumed that the absorbed laser

pulse intensity, temperature perturbations and their related

pressure perturbations in the region z1 � z* � z2 can be put

equal to zero.

Since the pressure P(z*, t) = P(t) in Eq. (6) is independent of

z*, it may be taken as a boundary condition for the acoustic

wave which propagates inward in the substrate.

Once the substrate surface z = 0 is not free, then the value

P0 6¼ 0 must be obtained by solving the complete hydro-

dynamic problem in the right-hand and left-hand sides under

the condition of equality of pressures and densities at the

interface. The interface drift velocity is determined by

expansion of both media, v1 ¼ e1

R 0

�z�
@T1
@t dz and

v2 ¼ �e2

R z�

0
@T2
@t dz, as well as by the acoustic pressures

P1(�z*, t) and P2(z*, t) at the left (index ‘‘1’’) and at the

right (index ‘‘2’’) to the interface, respectively. Taking into

account the relation between pressure and velocity for the

acoustic wave P(z + vs1t) = �ðr01vs1Þv and P(z � vs2t) =

�ðr02vs2Þv at the left-hand and right-hand sides, the conditions

for the velocity and pressure equality at the interface are:

v1 �
P1ð�z�; tÞ

a1

¼ v2 þ
P2ðz�; tÞ

a2

;

P1ð0; tÞ ¼ P2ð0; tÞ ¼ Pð0; tÞ;
(7)

where the symbols a1 = r01vs1, a2 = r02vs2, P1ð�z�; tÞ ¼
P1ð0; tÞ þ PT

1 , P2ðz�; tÞ ¼ P2ð0; tÞ þ PT
2 , PT

1 ¼
e1K1
cP1

@T1
@t




z¼0
;

PT
2 ¼

e2
cP2

k2
@T2
@t




z¼0

� �
þ 1

a
@I0ðtÞ

@t are introduced.

The pressure at the surface P(0, t) and the pressure impulse

in the substrate P2(t) are obtained from Eq. (7)
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is the heat flux across the interface

between the two phases and P0 = 1 bar is the unperturbed

pressure value. Note that given of the thermophysical para-

meters of both media have the same values, the apparent

dependency on temperature in Eqs. (8)–(10) falls out.

If the contact heating of the transparent medium may be

neglected (k1 � 0), Eqs. (8) and (9) become easier
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For the general case, the temperature profile in a two-layer

medium is given by the energy Eq. (2) under the condition of

continuity at the interface for the temperature T1(0, t) = T2(0,

t) = T0(t) and the heat flux Q(t).
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