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H I G H L I G H T S

• PCA performed on short-time MD experi-
ments leads to cosine-shapedprojections.

• Also PCA performed onmultidimension-
al Brownian dynamics leads to the same
result.

• We use Random Matrix Theory tools in
order to compareMDdatawithBrownian
systems.

• We show that protein dynamics is
not really Brownian also at very short
time-scale.

• We suggest that Random Matrix Theory
can be very useful in MD data analysis.
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It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics
data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results
obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time
protein dynamics is essentially nothing more than a noisy signal. Here we use RandomMatrix Theory to analyze
a series of short-time molecular dynamics experiments which are specifically designed to be simulations with
high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spec-
tral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the
finite length of the process, fromnon-randomsignals reflecting the intrinsic systemproperties. Our results clearly
show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on
principal axes.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Protein functions, such as substrate recognition and release, enzy-
matic activity and allosteric regulation, require conformational transi-
tions. Due to inherent difficulties to experimentally access to the time-
resolved protein motions, molecular dynamics has been increasingly
used in the study of molecular conformations in functionally-relevant

motions at atomic detail [1]. Nowadays, molecular dynamics protocols
permit to obtain accurate prediction of experimental observables (see,
for example Ref. [2]). However, the enormous intrinsic dimensionality
of biological systems poses serious intelligibility problems. To overcome
these difficulties, a series of techniques have been used in order to ob-
tain low-dimensional andmeaningful representations of the systemdy-
namics [3,4]. The search for collective coordinate systems, permitting to
identify subspaces in which functionally significant protein motions
could be easily and accurately identified, is nowadays an active and
attractive research field [3]. Among the computational methods for
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identifying useful collective coordinates one of the most widely used is
the normalmode analysis [5,6], which is based on the harmonic approx-
imation of the conformational energy surface. However, this approach
relies essentially on a single conformation, which is assumed to corre-
spond to the minimum energy structure. The presence of multiple min-
ima in the protein conformational energy landscape has determined a
wide use of computational approaches more suitable to be applied on
the large number of molecular configurations obtained by molecular
(or also Monte Carlo) dynamics. Principal component analysis (PCA) is
one of the most popular computational tool used for this task [4,7,8],
based both on the mass-weighted covariance matrix, as in the quasi-
harmonic analysis [9], or on a non-mass-weighted covariance matrix,
which is the approach used in the essential dynamics version [10].
Even if methods able to detect nonlinear correlations in molecular dy-
namics analysis have been proposed, such as the nonlinear principal
component analysis [11,12], the full correlation analysis [13] and the
Isomap-based routines [14,15], still the most widely used methods for
dimensionality reduction are PCA-based algorithms.

For systems in which a single potential well is an appropriate repre-
sentation of the conformational energy landscape, the mass-weighted
principal modes correspond essentially to the normal modes, i.e. the ei-
genvectors of the mass-weighted Hessian matrix matching the energy
minimum configuration. However, for systems in which multiple mini-
ma exist (or are at least supposed), analysis of the non-mass-weighted
covariance matrix is more appropriate. By this way, PCA may suitably
account for anharmonic molecular motions, thus providing access to
the largest collective atomic fluctuations. Generally, more than 80%
of the total atomic fluctuations are contained in less than 20% of the
principal axes.

One major drawback of covariance matrix-based analyses has been
pointed out: these methods critically depend on sampling. As was
shown in Ref. [16] principal components from the short-time multidi-
mensional protein simulations are cosine (or sine) shaped, similar to
what is observed in multidimensional random diffusion [16,17]. The
problem of how to separate intrinsic properties of themolecular system
from sampling artifacts has led to a series of studies and proposals
[17–20]. Generally, the accuracy of the covariance matrix analysis is
considered to depend on the statistical relevance of configuration space
sampled within the simulation time-course. Whereby, a number of sug-
gestions have beenmade in order to evaluate the so called ‘convergence’
of simulations. The cosine content method [16,17,21] or the overlap
measures of the essential subspaces [17,19,20], based on the root mean
square inner product of the essential eigenvectors, are among the most
popular ones. The question of the essential eigenvector convergence
has been addressed in several studies [3,18–22].

Here we show that the cosine-shaped appearance of the principal
component projections in molecular dynamics analysis does not mean
that protein motions are featureless, or equivalent to random diffusion.
The physical reason of these cosine-shaped low index projections is
simply related to the fact that, in short time-scale, proteins explore a
flat landscape, with shallow minima. Here we use a method able to
discriminate true non-random dynamics from pure random motions,
which is based on the RandomMatrix Theory (RMT) [23,24]. Thismeth-
od is suitable for the intrinsic system properties' extraction, also in
presence of apparently barrier-less dynamics, such as, even if not limit-
ed to, short time-scale simulations.

2. Methods

2.1. Molecular dynamics simulations set-up

Fully reduced apo-Cox17, PDB [25] entry 1U97 [26], has been used as
model system, similarly to what was reported in Ref. [27]. The protein
was immersed in a water sphere containing 6080 TIP3P type water
molecules and five counterbalancing potassium ions to preserve elec-
troneutrality. Molecular dynamics simulations were performed by

NAMD [28,29] using the all-atom Charmm22 force field [30] with
CMAP correction [31]. Simulationswere run at 310 K in theNVT ensem-
ble essentially as described [27]. Each simulation run lasted for 1.1 ns
after the minimization and equilibration protocol. Data extraction was
done using VMD [32].

For each simulation run T+1 conformationswere sampled (includ-
ing the starting one). The extracted data are in the form of atomic posi-
tion vectors: each vector in the conformational vector set has dimension
N = 3n and is of the form x1, y1, z1, …, xn, yn, zn, where each xi, yi, zi
corresponds to the Cartesian coordinates of the ith α-carbon atom.
The sampled conformations were arranged in an empirical data matrix
of dimension (T + 1) × N.

2.2. Principal component analysis and Random Matrix Theory

For data of dimensionality N, PCA permits to compute N so-called
principal components (PCs), which are N-dimensional vectors that are
aligned with the maximum variance directions of the data. The PCs
must form an orthonormal basis, i.e. they are all mutually perpendicular
and have unit length, so they are uncorrelated.

In the classical PCA algorithm, the input data consist of T+ 1 obser-
vations xt, each of dimensionN. From these observations, a centeredma-
trix is constructed by subtracting the mean value of each degree of
freedom time series. By this way we obtain a matrix whose elements
are atomic displacements from an average conformation (note that
this last conformation does not have a physical significance). The trans-
pose of the displacement matrix can be used for the Pearson's coeffi-
cient matrix calculation (see below for details). We use the rank-
ordered eigenvectors of the Pearson's coefficient matrix as PCs, instead
of the correlation matrix eigenvectors, and projections of the original
centered data on the PCs can be done simply by performing the dot
product, as usual.

The transpose of the temporal evolution matrix representing the
protein α-carbon atoms (see above) can be used to build a position
difference matrix D of dimension N × T, whose elements are

Dαt ¼ xα tþ1ð Þ−xαt : ð1Þ

From this difference matrix a new matrix X is constructed, whose
elements are

Xαi ¼
1
σα

xα ið Þ−xαð Þ ð2Þ

where σα represents the standard deviation of each degree of freedom
time series. Based on this matrix, a correlation matrix of size N × N
can be obtained:

C ¼ 1
T
XXT ð3Þ

where the T means the transpose matrix, and whose elements are the
Pearson's coefficients Cαβ. Statistical dependencies among the signals
(representing the degree of freedom time series) are revealed by the
non-zero elements of C. Eigenvalues and eigenvectors of C can be
obtained by solving the equation

Cvk ¼ λkvk ð4Þ

and the usual convention λ1≥ λ2 ≥ λ3≥…≥ λN is applied. Because, by
construction, the correlation matrix C is real and symmetric, its eigen-
values λk and the corresponding eigenvectors vk are also real. Note
that, since Cαα = 1 we have:

XN
k¼1

λk ¼ Trace Cð Þ ¼
XN
α¼1

Cαα ¼ N: ð5Þ

2 L.L. Palese / Biophysical Chemistry 196 (2015) 1–9



Download English Version:

https://daneshyari.com/en/article/5370889

Download Persian Version:

https://daneshyari.com/article/5370889

Daneshyari.com

https://daneshyari.com/en/article/5370889
https://daneshyari.com/article/5370889
https://daneshyari.com

