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H I G H L I G H T S

• First structure-based approach for pre-
diction of protein-Fatty acid interaction

• Does not require evolutionary informa-
tion for the prediction

• Useful in annotating protein structures
of unknown function and computational
protein models
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Protein-fatty acid interaction is vital for many cellular processes and understanding this interaction is important
for functional annotation aswell as drug discovery. In thiswork, we present amethod for predicting the fatty acid
(FA)-binding residues by using three-dimensional probability density distributions of interacting atoms of FAs on
protein surfaces which are derived from the known protein-FA complex structures. A machine learning
algorithm was established to learn the characteristic patterns of the probability density maps specific to the
FA-binding sites. The predictor was trained with five-fold cross validation on a non-redundant training set and
then evaluated with an independent test set as well as on holo–apo pair's dataset. The results showed good
accuracy in predicting the FA-binding residues. Further, the predictor developed in this study is implemented
as an online server which is freely accessible at the following website, http://ismblab.genomics.sinica.edu.tw/.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Fatty acids (FAs) play an important role in metabolic regulation,
modulation of gene expression, cell signaling, maintaining cell structure
and also acting as an energy source [1–4]. Further, hundreds of bioactive

lipid mediators called eicosanoids are derived from the FAs and they all
are involved in pro and anti-inflammatory responses [3,5]. Essentially
the FAs interact with proteins called as FA-binding proteins (FABP)
to perform all these functions. These proteins are members of a super-
family of lipid-bindingproteins. Somenon-lipid-binding family proteins
such as heat shock protein, feutin, caveolin 1, glutathione S-transferase,
sterol-carrier protein-2 and fatty acid transporter also show affinity for
the FAs [6–8]. Given its importance in lipid-mediated and inflammatory
pathways, defects in either FAs and/or FABP protein functions lead to
manymetabolic diseases including obesity, diabetes and atherosclerosis
[9–11]. Few therapeutic inhibitors which could be a potential therapeu-
tic strategy to treat diabetes, insulin resistance, atherosclerosis and
other fatty liver diseases have been reported [12–14]. Therefore under-
standing the FA-protein interaction and identifying of FA-binding sites
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are important as it can aid in drug discovery process for developing
therapeutic molecules against the metabolic diseases.

A computational method for predicting the FA-binding site on the
proteins would greatly facilitate the identification of FA-binding sites
on the protein structure. Few computational methods have been devel-
oped to predict the lipid-binding residues from the protein sequences.
Tempel et al. [15] and Scott et al. [16] developed methods to predict
lipid-binding residues for cytoskeleton and cytoskeleton-associated
proteins respectively.Wang et al. [17] andXiong et al. [18] used support
vector machine approach to predict the lipid-binding residues from the
protein sequences. Lin et al. [19] developed a method to identify the
functional class of lipid-binding proteins from protein sequences.
Although these methods are reasonably successful in their respective
prediction, they all are not specific for protein-FA interaction prediction
and moreover most of them are sequence based as well as use evolu-
tionary information for their prediction. These methods may have diffi-
culty in predicting the binding sites from the orphan proteins. Therefore
a reliable structure-based method for predicting FA-binding residues
without using the evolutionary information is necessary.

In this study, we have developed a structure-based method which
uses machine learning approach to predict the FA-binding sites on
the protein surfaces. This method mainly recognizes characteristics
interacting atom distribution patterns associated with the FA-binding.
The basic principle has been already applied successfully to predict
protein–protein [20], protein–carbohydrate [21] and protein–FMN
interactions [22]. Here we have extended this method to predict the
FA-binding residues. In the prediction, protein surface atoms (it refers
to all the protein atoms including interior atoms) were first categorized
into 30 atom types and one machine learning model was trained for
each of the atom types. The input attributes for themachine learning al-
gorithmwere normalized distance-weighted sum of three-dimensional
probability density maps (PDMs) of 35 interacting atom types (30 atom
types fromprotein, 1 fromwater and 4 from FA) on the protein surfaces.
The PDMs around the query protein atoms for the protein interacting
atom types and water have been described in previous publications
[20,21]; the PDMs for the 4 FA interacting atom types were constructed
with the protein–FA interacting atom pairs from the dataset of 440 pro-
tein–FA complex structures. The machine learning algorithm learned
the patterns of the attributes to distinguish the binding atoms from
the non-binding atoms on the protein surfaces. We evaluated our pre-
dictor performance by five-fold cross validation on the training dataset
P75 and then the trainedmodel used to predict the independent test set
P25 and holo–apo pairs. The results indicate that our approach can pre-
dict the FA-binding sites with very good accuracy.

2. Materials and methods

2.1. Datasets

All the structureswere extracted from PDB [23]. The training set P75
contains 75 chains that released before the 31st of December 2010 and
that binds different FAs. The test set P25 contains structures which re-
leased after the 31st of December 2010 and retained 25 structures
which shares less than 5% sequence similarity with training set [24].
Holo and apo datasets consist of 10 proteins in each set. The given resi-
due is annotated as a FA-binding, if any of the FA atoms within 5 Å dis-
tance with any protein atoms. The negative dataset of S108 and S142
were collected from protein–carbohydrate [21] and protein–protein in-
teraction [20] predictions respectively.

2.2. Construction of three-dimensional probability density maps of non-
covalent interacting atoms on protein surfaces

Themethodology for the PDMconstruction for protein-non covalent
interacting atom pair (Table 1, atom types 1–31) has been described
previously [20,21]. The PDMs for FA atoms (Table 1, atom types

32–35) were constructed with protein–FA interacting atom pair data-
base derived from 440 protein–FA complexes. In order to keep the
PDMs high in information content and low in noise from irrelevant in-
teractions, non-interacting pairs were eliminated with the filter system
based on the work by McConkey et al. [25].

2.3. PDM-based attributes as inputs for machine learning algorithms

The input attributes were derived from PDMs on the protein sur-
faces. Atoms from the protein surface and interior were categorized
into 30 protein atom types and for each atom type onemachine learning
model was trained. For each atom i on the surface of the query protein
(solvent accessible surface area of atom i N 0), the PDM values associat-
ed with the grids within 5 Å radius centered at the atomwere summed
in Eq. (1).

Si; j ¼
Xri;k ≤5A

k
gk; j ð1Þ

where Si,j is the PDM sum for interacting atom type j at atom i; ri,k is the
distance between atom i to a grid point k; gk,j is the PDM value of
interacting atom type j at grid point k. Ai,j (j = 1,40) associated with
each atom i was calculated with Eq. (2).

Ai; j ¼ Si; j þ
Xdi;k ≤10Α

k
Sk; j � d−2

i;kXdi;n ≤10Α
n

d−2
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Table 1
Protein and fatty acid atom types.

ID # Atom type Radius (Å) Description

1 NH1 1.65 Backbone NH
2 C 1.76 Backbone C
3 CH1E 1.87 Backbone CA (exc. Gly)
4 O 1.40 Backbone O
5 CH0 1.76 Arg CZ, Asn CG, Asp CG, Gln CD, Glu CD
6 CH1S 1.87 Sidechain CH1: Ile CB, Leu CG, Thr CB, Val CB
7 CH2E 1.87 Tetrahedral CH2 (except CH2P, CH2G) all CB
8 CH3E 1.87 Tetrahedral CH3
9 CR1E 1.76 Aromatic CH (except CR1W, CRHH, CR1H)
10 OH1 1.40 Alcohol OH (Ser OG, Thr OG1, Tyr OH)
11 OC 1.40 Carboxyl O (Asp OD1, OD2, Glu OE1, OE2)
12 OS 1.40 Sidechain O: Asn OD1, Gln OE1
13 CH2G 1.87 Gly CA
14 CH2P 1.87 Pro CB, CG, CD
15 NH1S 1.65 Sidechain NH: Arg NE, His ND1, NE1, Trp NE1
16 NC2 1.65 Arg NH1, NH2
17 NH2 1.65 Asn ND2, Gln NE2
18 CR1W 1.76 Trp CZ2, CH2
19 CY2 1.76 Tyr CZ
20 SC 1.85 Cys S
21 CF 1.76 Phe CG
22 SM 1.85 Met S
23 CY 1.76 Tyr CG
24 CW 1.76 Trp CD2, CE2
25 CRHH 1.76 His CE1
26 NH3 1.50 Lys NZ
27 CR1H 1.76 His CD2
28 C5 1.76 His CG
29 N 1.65 Pro N
30 C5W 1.76 Trp CG
31 HOH 1.40 Water
32 ZC3 1.90 Sp3 carbon
33 ZO3 1.68 Sp3 oxygen
34 ZO2 1.66 Sp2 oxygen
35 ZC3 1.90 Sp2 carbon

The protein atom types 1–31 have been previously defined by Laskowski et al. [39] with
minor modifications. The atom types 32–35 were defined in this work for fatty acid
molecule.
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