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H I G H L I G H T S

► The influences of common noise in an
elementary circadian clock model were
studied.

► Common noise plays constructive roles
on the collective behavior in themodel.

► Noise could induce synchronous
oscillations in two uncoupled non-
identical systems.

► The common noise induced synchro-
nous oscillations are robust to internal
noise.
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The effect of common noise on the collective behavior of circadian oscillation systemswas studied in an elemen-
tary circadian clock model. It is shown that common noise could induce synchronous oscillations in two
uncoupled non-identical systems in the deterministic stable steady state region. The synchronicity of common
noise induced oscillations is suppressed by the internal noise, but is not remarkably decreased within a wide
range of internal noise intensity. This demonstrates that the common noise induced synchronous oscillations
are rather robust to internal fluctuations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Many living organisms have evolved to generate an endogenous
clock with a period of nearly 24 h to anticipate daily changes in the
environment [1,2]. In multicellular organisms, the circadian clocks are
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generated bymultiple autonomous single-cell oscillators, which are in-
trinsically diverse, and these individual oscillators produce synchronous
oscillations [3–7]. For instance, the master clock of suprachiasmatic nu-
cleus, composed of thousands of single-cell circadian clocks with pe-
riods ranging from 20 to 28 h, can lead to coordinated circadian
outputs [7]. In recent years, several models have been developed to ex-
plain this phenomenon [8–11], most of which gain synchronization
through intercellular coupling. For example, Ueda et al. [8] proposed
an intercellular coupling mechanism that the circadian clock regulated
synchronization factor secreted from one cell is received by the neigh-
boring cells so that reaction rates in the circadian system are adjusted.
Mcmillen et al. [10] recently achieved intercellular coupling through
small molecule diffusion between cells and the environment. However,
the mechanisms for the intercellular synchronization of circadian clock
are far from being well understood.

In biological systems, all cells are subjected to intracellular mo-
lecular fluctuations and extracellular environment perturbations
[12,13]. Many investigations have shown that noise can play a con-
structional role through stochastic resonance [14] or coherence res-
onance [15]. Recent studies in biological, chemical and physical
systems have shown that noise can positively affect the collective be-
havior of cells [16–19]. For instances, an ensemble of independent
neurons could be synchronized by the same fluctuating input current
[16]. In electrochemical systems, two coupled chaotic oscillators
could be synchronized by common external noise or common fluctu-
ation in the coupling strength [18]. Very recently, in genetic oscilla-
tors, Zhou et al. also found that additional extracellular noises
common to all cells can induce synchronized oscillations [20]. More-
over, there are also analytical and numerical investigations on the
common noise induced synchronization in limit cycle oscillators
[21,22] and chaotic systems [23,24]. To understand the mechanism
of circadian clock synchronization, it is very necessary to investigate
the effects of common noise on their collective behaviors. Besides,
since the internal noise is inevitable andmay disturb cooperative be-
haviors [25], it is necessary to investigate the effects of internal noise
as well.

In this paper, the effects of common noise on two non-identical
uncoupled circadian sub-systems are investigated. It is found that com-
mon noise can induce synchronous circadian oscillations in the deter-
ministic steady state region. Internal noise is revealed to play a
destructive role in adjusting the collective behavior. However, the syn-
chronicity between stochastic oscillations is not affected during a wide
range of internal noise, demonstrating the robustness of the synchro-
nous oscillations to the internal noise.

2. Model and method

An elementary two-variable model [26] is employed in the present
study. It is composed of a negative feedback loop, in which the effective
protein inhibits the production of its mRNA, and a time delay, during
which the effective protein is produced from its mRNA. The systems
can be described as follows:
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where the variables M(j) and P(j) (the index j denotes the jth
sub-system) represent the concentrations of mRNA and effective pro-
tein, respectively. rM is the scaled mRNA production rate constant, rP is
the protein production rate constant, and qM and qP

(j) represent the
mRNA and protein degradation rate constants, respectively. n is the
Hill coefficient, the exponentm denotes the nonlinearity in the protein

production cascade, the delay τ represents the total duration of protein
production from mRNA, and k is a scaling constant. The protein degra-
dation rate qP is chosen as the control parameter and characterizes the
difference between individual systems since it is the only parameter
that can change in a relatively wide range without apparently influenc-
ing the oscillator period [26]. Other parameters are set as: rM=1 h−1,
rP=1 h−1, n=2, m=3, τ=4 h, k=1. And qM is chosen as 0.21 h−1

because only in this case, the system exhibit oscillation's period is
around 24 h. For detailed information about the model or the parame-
ter choice, see ref [26]. ξ(t) is Gaussian white noises withbξ(t)>=0
andbξ(t)ξ(s)>=δ(t−s), and D characterizes the noise strength.
Dξ(t) represents the common external noise resulting from the com-
mon extracellular environment perturbations. Here, for simplicity,
only two individual systems are considered, that is, j=1,2.

To investigate the effects of internal noise, the chemical Langevin
method proposed by Gillespie [27] is used. The chemical Langevin
equation for the current model reads:
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where ai
(j) (i=1,…,4; j=1,2) are the transition rates per volume,

representing the synthesis and degradation of mRNA, and protein re-
spectively. And the expressions of ai

(j) (i=1,…,4; j=1,2) corre-
spond to the first and second terms at the right side of Eqs. (1) and
(2), respectively. ζi(j) (i=1,…,4; j=1,2) are independent Gaussian
white noises withbζi(j)(t)>=0 andbζi(k)(t)ζj(l)(s)>=δijδklδ(t− s).
In simulation, they are generated independently with the external
noise. According to Ref. [27], internal noise is actually denoted by
the second terms in the bracket at the right side of Eqs. (3) and (4),
from which it is clear that the magnitude of internal noise scales is
1=

ffiffiffiffi
V

p
and depends on M, P and the control parameters. In order to

keep corresponding deterministic kinetics unchanged and obtain
the pure effect of internal noise, the magnitude of the internal
noise is varied via changing V. For the deterministic model
(Eqs. (1) and (2) with D=0), simulation with Runge–Kutta and
Euler algorithm show no qualitative difference in both the bifurca-
tion and dynamic behaviors, which prove that Euler method is reli-
able for the current system. Therefore, Euler method with time step
of 0.01 h is employed to integrate the deterministic system. The
noise influenced stochastic system is integrated by the standard pro-
cedure for stochastic differential equations [28]. The chemical
Langevin equations (Eqs. (3) and (4)) are integrated by the Euler–
Maruyama method [29] with the time step of 0.01 h and common
noise intensity D=0.8.

3. Results and discussion

To investigate the effect of common noise, it is necessary to study
the corresponding deterministic kinetics for comparison. Simulation re-
sults of the deterministic model show that when increasing the control
parameter qP, the system undergoes Hopf bifurcation (HB) at qP≈0.127
(Fig. 1). The HB point divides the parameter space into two regions: the
steady state (SS) region to the left and the oscillatory (OSC) region to
the right.

It has been reported that noise often play constructive roles in the
steady state region near the bifurcation point [30–32]. Han et al.
[33,34] have revealed the synchronization of noise induced oscillations
in coupled coherence resonance oscillators. Therefore, we focus on the
SS regions near the HB point. Fig. 1 also plotted themaximum andmin-
imum values of P in the stochastic model with D=0.2. It is clear that in
the stochastic case, theHBpoints defined by the deterministic dynamics
disappear, and ‘stochastic’ oscillations appear in the SS regions near the
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