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The effect of internal noise in a delayed circadian oscillator is studied by using both chemical Langevin
equations and stochastic normal form theory. It is found that internal noise can induce circadian oscillation
even if the delay time τ is below the deterministic Hopf bifurcation τh. We use signal-to-noise ratio (SNR) to
quantitatively characterize the performance of such noise induced oscillations and a threshold value of SNR is
introduced to define the so-called effective oscillation. Interestingly, the τ-range for effective stochastic
oscillation, denoted as ΔτEO, shows a bell-shaped dependence on the intensity of internal noise which is
inversely proportional to the system size. We have also investigated how the rates of synthesis and
degradation of the clock protein influence the SNR and thus ΔτEO. The decay rate Kd could significantly affect
ΔτEO, while varying the gene expression rate Ke has no obvious effect if Ke is not too small. Stochastic normal
form analysis and numerical simulations are in good consistency with each other. This work provides us
comprehensive understandings of how internal noise and time delay work cooperatively to influence the
dynamics of circadian oscillations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Gene regulation processes usually involve large timescale separa-
tions. Fast reactions such as the binding or release of a transcription
factor to an operator site or the dimerization of some proteins occur
on timescales of seconds, while the transcription or translation of a
gene may take minutes or even hours. Generally, transcriptional and
translational processes are not only slow but also involve numbers of
elementary reactions. These multi-step processes could be treated as
delayed reactions, in which the initiating events are separated from
the appearance of products by certain interval of time delay. Recent
studies indicate that such types of delay could be pivotal in inducing
oscillations in gene regulation [1,2]. Specifically, it is proved
experimentally that time delay is an important mechanism in
circadian systems such as Neurospora and Drosophila [3–5]. Several
theoretical models have been proposed to address the importance of
delay in circadian rhythm oscillations [6–10]. For example, a general
delay model based on the kinetics of synthesis and degradation of a
clock protein and its messenger RNA has been proposed, which
displays a rich and realistic repertoire of circadian rhythm behavior
[6]. Lema et al. introduced a model with a delayed negative feedback
exerted by a protein on the expression of its gene, which fulfills most
of the necessary characteristics of a realistic representation of natural

circadian clocks [8]. Smolen et al. constructed two detailed models for
Neurospora and Drosophila with both negative and positive feedback
loops [7]. They also came up with a reduced model involving the basic
biochemical elements of the circadian rhythm generator. Such
reduced model contains only two differential equations, each with a
time delay [9]. All these models mentioned above take advantage of
time delay to represent the slow processes whose details are too
complex or uncertain to model, and it is found that delay is the
dominant source of large deterministic variability, which is usually
recognized as the Hopf bifurcation [11].

Biochemical reactions, in which the number of reactantmolecules is
usually small, are inherently stochastic and the internal noise is non-
ignorable. The effect of internal noise in biological systems has gained
much research interest in recent years [12–14]. On one hand, internal
noise may be a source of disorder, and considerable attentions have
been paid to the underlying mechanism regarding how the system
shows robustness and resistance against such fluctuations [13,15,16].
On the other hand, recent studies showed that internal noise could also
play constructive roles in gene regulatory processes under certain
circumstances [17–27]. For example, noise in gene expression may
increase population diversity and thus enhance survival in the face of
environmentaluncertainty [17,18]. Internal noise can selectively sustain
the intrinsic frequency and optimize the noise-induced signals in
mesoscopic hormone signaling system [20]. Specifically, for systems
located outside but close to the deterministic oscillatory region, noise
can induce stochastic oscillations, whose performance, characterized by
a well-defined signal-to-noise ratio (SNR), may showmaxima with the
variation of the internal noise level, generally known as internal noise

Biophysical Chemistry 158 (2011) 54–60

⁎ Corresponding author at: Hefei National Laboratory for Physical Sciences at
Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China.
Tel.: +86 551 3607880.

E-mail address: hzhlj@ustc.edu.cn (Z. Hou).

0301-4622/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.bpc.2011.05.003

Contents lists available at ScienceDirect

Biophysical Chemistry

j ourna l homepage: ht tp : / /www.e lsev ie r.com/ locate /b iophyschem

http://dx.doi.org/10.1016/j.bpc.2011.05.003
mailto:hzhlj@ustc.edu.cn
http://dx.doi.org/10.1016/j.bpc.2011.05.003
http://www.sciencedirect.com/science/journal/03014622


coherence resonance. Since the internal noise strength is inversely
proportional to the system size, this phenomenon also indicates a kind
of optimal system size effect [28,29]. Such interesting phenomenon has
been observed in many mesoscopic biochemical systems, including
circadian oscillators [25,26]. In most previous works, the effects of
internal noise are mainly investigated by simulation methods. Very
recently, our group have developed the stochastic normal from theory
(SNFT) [22,30–32], an analytical methodwhich not only reproduces the
optimal size effect quantitatively well, but also provides deep
understanding about how the system shows robustness to, or even
takes advantage of the internal noise. Nevertheless, the constructive
roles of internal noise in circadian clock systems with delay, e.g., noise
induced oscillation (NIO), internal noise coherence resonance and
related behaviors, have not been well investigated [16].

In this paper, we have studied the effects of internal noise near the
Hopf bifurcation induced by time delay τ in a circadian oscillator
model both numerically and theoretically. We find that internal noise
can sustain circadian oscillation in a wider τ-range than that predicted
by the deterministic model. Those NIO with good performances, i.e.,
their SNR are larger than a certain threshold, are defined as effective
oscillations (EO). The τ-range for the occurrence of EO, denoted as
ΔτEO, are calculated at different system sizes. Interestingly, ΔτEO
typically exhibits a maxima at an optimal system size V. The
dependence of ΔτEO on the expression rate Ke and degradation rate
Kd are also studied. The results show that ΔτEO depends strongly on Kd

but not that much on Ke. To get a deeper understanding of such
nontrivial features, we have also performed theoretical analysis based
on the SNFT. The theory clearly shows that the SNR is determined by
an effective noise intensity which is related to Ke, Kd and the delay
time τ. The results obtained by SNFT show rather good agreements
with the simulation results.

The rest of the paper is organized as follows.We present ourmodel
and methods in Section 2. Results for numerical simulation and
theoretical analysis are given in Section 3, followed by conclusions in
Section 4.

2. Model and methods

2.1. Deterministic description

In the present paper, we are mainly interested in the interplay
between internal noise and delay in circadian clock systems. Recent
study on Neurospora crassa has shown that negative feedback and
time delay are the two essential aspects for circadian oscillation
[10,33]. For simplicity, we consider the model proposed by Lema [8],
which has taken these two basic factors into account. The model
simply involves two steps: the birth step of the clock protein via the
gene expression, which is regulated by a delayed negative feedback by
the protein itself, and the death step due to the degradation of the
protein. The deterministic model for such a circadian oscillator is
given by the following equation,

dx tð Þ
dt

= KeG t−τð Þ−Kdx tð Þ; ð1Þ

where x(t),Ke and Kd denote the concentration, synthesis rate
constant, and degradation rate constant of the clock protein,
respectively. The first term on the right side describes the synthesis
of clock gene with delayed feedback, where

G t−τð Þ = 1
1 + x t−τð Þ=Ki½ �n ð2Þ

represents the level of gene activation, with Ki the inhibition rate
constant and n the Hill coefficient. In our study, we fix the parameters
Ki=0.5 and n=4 unless otherwise specified.

Choosing τ as the control parameter, the system (1) may show a
supercritical Hopf bifurcation (HB). One should note, however, Eq. (1)
is not autonomous due to the delay, and the determination of the HB
value, τh, is somewhat different from that of autonomous ordinary
differential equations. To do so, one may perform linear stability
analysis around the fixed point xs of Eq. (1), satisfying dx/dt|x= xs=0.
For tiny perturbations δx=x−xs and δxτ=xτ−xs, where xτ=x(t−τ),
we have

δ ẋ = −aδx−bδxτ + g δx; δxτð Þ; ð3Þ

where a=kd, b=64kexs3/(1+16xs4)2 are linear coefficients, g(δx,δxτ)
stands for the nonlinear terms of δx and δxτ. Assuming Eq. (3) has a
solution with the form δx(t)∼ceλt, one gets the following equation for
eigenvalue λ

λ = −a−be−λτ
: ð4Þ

Typically, Eq. (4) has infinitelymanysolutionsλq (q∈Z) [34]. Given b
larger than a, the system described by Eq. (3) may exhibit a pair of pure
imaginary eigenvalues ±ωi corresponding to the principal solution
with q=0, leading to aHopf bifurcation. TheHBvalue for delay time can
be readily obtained as τh = cos−1 −a = bð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2−a2

p
:

2.2. The chemical Langevin equation (CLE)

The circadian clock system is regulated by a gene network on the
molecular level, such that internal noise must be considered. In order
to take internal noise into account, we can describe the chemical
reaction system as a birth/death stochastic process governed by a
chemical master equation. Usually, the master equation can not be
solved directly, but it provides the basis for kinetic Monte Carlo
simulations. In 1977, Gillespie proposed the well-known stochastic
simulation algorithm (SSA)which can exactly account for the stochastic
nature of the reaction events [35]. For large systems, however, the SSA
approach could be rather expensive and is not particularly efficient. For
reaction systems of typically mesoscopic size or involving intermediate
number of reactant molecules, several approximation methods can be
used instead of SSA. Typically, for a system with the existence of a so-
called ‘macro-infinitesimal time scale’, one may use some kind of
leapingmethod, which focus on howmany times each reaction process
will happen in the following leaping time interval. If these reaction times
are not too small, one may also further approximate the dynamics by a
stochastic differential equation, namely, the CLE [36]. In previousworks,
it has been shown that CLEs dowork quitewell formesoscopic chemical
oscillation systems [25], at least qualitatively, for the issues we want to
address in the present study. In addition, the CLE clearly includes a
deterministic part and a noise part, which makes it convenient to
compare with the deterministic modeling, thus unravel the very role
that played by the internal noise.

For the minimal system considered here, we may consider two
reaction channels involving the change of the number X of the clock
protein, namely, X→X+1 for the birth and X→X−1 for the death.
Correspondingly, the propensity functions (or rates) can be approxi-

mately given by W1 = w1V = KeV
1 + x t−τð Þ=Ki½ �n and W2=w2V=KdVx(t),

respectively. In its general form, the CLE then reads [37],

dx tð Þ
dt

= w1−w2ð Þ + 1ffiffiffiffi
V

p ffiffiffiffiffiffiffi
w1

p
η1 tð Þ− ffiffiffiffiffiffiffi

w2
p

η2 tð Þð Þ ð5Þ

where η1 and η2 are two independent Gaussian noises with zeromean
and unit variance. In this study, the numerical results are obtained by
simulation of Eq. (5).
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