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In the present work the influence of internal noise resulting from small cell volume on bursting calcium
oscillations is studied. With the internal noise switched on, the center of the main peak in the PSD (power
spectrum density) was modified by internal noise. With increasing of the cell volume, the calculated signal-
to-noise ratio (SNR) undergoes a maximum, which is referred in the present work as explicit bursting
stochastic resonance. In addition, another quantity, the correlation time is used to measure the coherence of
bursting oscillations. We demonstrate that the correlation time of the oscillations also exhibits a maximum at
a certain cell volume.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Bursting activity, which consists of alternating active and silent
phases of spiking and quiescence, is a multi-time-scale phenomenon.
Since it was firstly reported for the electrical activity of the neuron R15
[1,2], bursting activity has been studied experimentally [3–5] and
theoretically [6–10] in the last three decades. For example, bursting
has been observed in thalamic neurons [4], AB neurons [5],
dopaminergic neurons [6], cerebellar Purkinje cells [11], and pancrea-
tic β-cells [3,12]. Recently, bursting oscillations for intracellular Ca2+

signaling has attracted considerable attention. A significant part of
signal transduction and controlling the complex behavior of biological
systems is performed by the oscillatory changing of free cytosolic
calcium concentration in excitable as well as in non-excitable cells
[13]. These oscillations regulate many cellular processes ranging from
egg fertilization to cell death [14]. Bursting oscillations of free
cytosolic calcium have been found experimentally in many types of
cells [15–17]. It has been shown that calcium bursting is more effective
in maintaining glucose homeostasis than spikes [18,19], which
suggests bursting being more helpful for insulin secretion [20].

Internal signal stochastic resonance (ISSR), i.e. noise-induced
internal signal amplification [21,22] has been the topic of many
investigations in the past both for its inherent interest and for its broad
range of applications. With the development of SR studies, another
type of ISSR, explicit internal signal stochastic resonance (EISSR) has
been reported, where noise is directly added to an oscillatory state
which is the intrinsic simple periodic signal of the system [23–26].
While most of the prior work only accounts for experimental external

noise, the research attention has been gradually shifted to internal
noise stochastic resonance (INSR). Internal noise resulting from the
finite system size could induce stochastic oscillations, which show the
best performance at a certain system size. However, seemingly little
attention has been paid on the intrinsic noise amplification of the
complex internal bursting signal.

In the present work, the reduced Kummermodel [27] is used to get
insight into the influence of internal noise on calcium bursting
behavior. An internal noise-induced coherent motion was observed:
with the increment of intrinsic noise level the evaluated signal-to-
noise ratio (SNR) firstly increases and decreases slightly and then
flattens out. The correlation time was also used to measure the
coherence of bursting oscillations and the same results were obtained.
Similar profiles of SNR and the correlation time demonstrated the
occurrence of explicit bursting stochastic resonance.

2. Model description

The reduced Kummer model [27] describing the intracellular
calcium oscillations in hepatocytes is used in this research. It is a core
model and does not include all the processes that occur in calcium
signal transduction but captures the fundamental dynamical char-
acteristics of the complete model [28]. After the binding of an agonist
to the extracellular side of a membrane-bound receptor molecule, the
Gα subunit at the intracellular side of the receptor-coupled G-protein
is activated. The activated G-protein in turn stimulates a phospholi-
pase C (PLC), which leads to the production of IP3, which diffuses
through the cell and binds to receptors at the endoplasmic reticulum.
This leads to the liberation of calcium from endoplasmic reticulum
and in some cases to the inflow of calcium from extracellular space
[28]. The concentration of IP3 is not considered here as a separate
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variable. For simplicity, IP3 is assumed to be in a quasistationary state.
The reduced model of a single cell is presented as

dx
dt

= k1 + k2x − k3xy
x + K4

− k5xz
x + K6

;

dy
dt

= k7x − k8y
y + K9

;

dz
dt

= k10x − k11z
z + K12

;

ð1Þ

where xdenotes the concentration of activeGα subunits of theG-protein,
y refers to the concentration of active PLC, and z is the concentration
of free calcium in the cytosol. More details of the model can be seen in
Ref. [27]. Parameter values used here are: k1=0.212, k3=1.52,K4=0.19,
k5=4.88, K6=1.18, k7=1.24, k8=32.24, K9=29.09, k10=13.58,
k11=153.0, K12=0.16. Herein, k2 is the concentration of agonist and is
selected here as the control parameter.

For a typical living cell, such a deterministic description is not
strictly valid due to the existence of considerable internal noise.
Generally, one can describe the reaction system as a birth–death
stochastic process governed by a chemical master equation [29],
which describes the time evolution of the probability of a given
number of molecules of reaction species. Although there is no
procedure to solve this master equation analytically, it provides the
starting point for numerical simulations. The exact stochastic
simulation (ESS), introduced by Gillespie [30], implements such a
master equation approach to stochastic chemical dynamics, which has
been used as the stochastic method to describe the core model [27].
The ESS stochastically determines the reaction that takes place
according to the probability of each reaction as well as the time
interval to the next reaction. The numbers of molecules of different
reacting species as well as the probabilities are updated at each time
step. According to the ESS method, the number of active Gα units
is introduced as X, the number of active PLC as Y, and the number
of calcium ions in the cytosol as Z, such that the concentration of
the reactants are x = X

LV, y = Y
LV and z = Z

LV, where L is the Avogadro's
number, V is the total cell volume, which is sometimes referred to as
the system size and used to control the number of molecules present
in the system, as described in Ref. [31]. The ESS method exactly
accounts for the stochastic nature of the reaction events and has been
widely used to study the properties and effects of internal noise in a
variety of systems, but it is very time consuming and hardly applicable
if the system size is large. In addition, it cannot afford us a clear
perspective on the origin and magnitude of the internal noise in the
system. Provided two dynamical conditions are satisfied, the micro-
physical premise fromwhich the chemical master equation is derived
leads directly to an approximate time-evolution equation of Langevin
type. Condition (i): requires the time step dt to be small enough that
the change in the state during [t, t+dt] will be so slight that none of

the propensity functions changes its value appreciably. Condition
(ii): requires dt to be large enough that the expected number of
occurrences of each reaction channel in [t, t+dt] be much larger than
one. The chemical Langevin (CL) method [32] has proven to be an
efficient simulation algorithm [33–35] to account for internal noise.
From the form of CLE, one can clearly find how the internal noise
involved in the chemical reactions is related to the parameter values,
the system size and the state variables that evolve with time. Here, the
CL equations for the Kummer model can be described as

dX
dt

= a1 + a2 − a3 − a4ð Þ + ffiffiffiffiffi
a1

p
n1 +

ffiffiffiffiffi
a2

p
n2 − ffiffiffiffiffi

a3
p

n3 − ffiffiffiffiffi
a4

p
n4ð Þ;

dY
dt

= a5 − a6ð Þ + ffiffiffiffiffi
a5

p
n5 − ffiffiffiffiffi

a6
p

n6ð Þ;
dZ
dt

= a7 − a8ð Þ + ffiffiffiffiffi
a7

p
n7 − ffiffiffiffiffi

a8
p

n8ð Þ
ð2Þ

where

a1 = k1 · V ; a2 = k2x · V ; a3 =
k3xy

x + K4
· V ; a4 =

k5xz
x + K6

· V ; a5 = k7x · V ;

a6 =
k8y

y + K9
· V ; a7 = k10x · V ; a8 =

k11z
z + K12

· V

a1⋯a8 are the transition rates of each reaction channel, as described in
Table 1, where several reaction progresses have been eliminated
according to the core model. ξi=1,…, 8(t) are Gaussian white noises
with 〈ξi(t)〉=0 and 〈ξi(t)ξj(t')〉=δijδ(t− t'). The additional terms
compared to Eq. (1) describe internal noise, which is related to the cell
volume V. Thereby V governs the amplitude of internal noise.

According to the relationship between the concentration and the
molecule number, the corresponding macroscopic differential equa-
tions for the CL equations read

dx
dt

=
1
V

a1 + a2 − a3 − a4ð Þ + ffiffiffiffiffi
a1

p
n1 +

ffiffiffiffiffi
a2

p
n2 − ffiffiffiffiffi

a3
p

n3 − ffiffiffiffiffi
a4

p
n4ð Þ½ �;

dy
dt

=
1
V

a5 − a6ð Þ + ffiffiffiffiffi
a5

p
n5 − ffiffiffiffiffi

a6
p

n6ð Þ½ �;
dz
dt

=
1
V

a7 − a8ð Þ + ffiffiffiffiffi
a7

p
n7 − ffiffiffiffiffi

a8
p

n8ð Þ½ �

ð3Þ

From the form of Eq. (3) it can be found that the level of internal
noise in the studied system is proportional to 1 =

ffiffiffiffi
V

p
. If V→∞, Eq. (3)

equal to the deterministic Eq. (1).

3. Results and discussion

With the variation of the control parameter k2, the model is able to
display spike and burst behaviors as appear in real cells [27]. We are
primarily interested in the periodic bursting dynamics, and the
control parameter k2 is thus adjusted to 2.85. Most of the concepts
about bursting oscillations come from neuron dynamics where
bursting is an action potential one. In the present work, bursting is
one mode of calcium oscillations, which is resulted from extracellular
stimulation with such agonists as ATP and UTP in hepatocytes [27]. In
order to elucidate the influence of internal noise, it is necessary to
study the corresponding deterministic kinetics for comparison. Eq. (1)
is integrated by using the explicit Euler method with a time step
0.0002 s, and the resulted time courses reported in Fig. 1a show the
periodic bursting dynamics, where each main spike is followed by a
series of secondary oscillations. The power spectrum density (PSD)
in Fig. 1b shows the counterparts of the spikes in time courses. As can
be readily observed there is one large peak and several low peaks at
distinctively different frequencies. The bursting oscillations are consist
of short trains of rapid spike oscillations intercalated by quiescent
intervals, and they repeat periodically. Therefore Fig. 1b displays a

Table 1
Stochastic transition processes and corresponding rates.

Transition
processes

Description Transition rates

(1)X→X+1 The spontaneous activation of Gα units a1=V·k1
(2)X→X+1 The accelerated formation of active Gα after binding

of agonist to the membrane receptor
a2=V·k2x

(3)X→X−1 The inactivation of Gα units accelerated by active PLC a3 = V · k3xy
x + K4

(4)X→X−1 Negative feedback of calcium-dependent kinase on
Gα units

a4 = V · k5xy
x + K6

(5) Y→Y+1 The activation of PLC depends on the concentration
of active Gα units

a5 = V · k7x

(6) Y→Y−1 The enzymatic inactivation of PLC a6 = V · k8y
y + K9

(7) Z→Z+1 The influx of calcium from the extracellular Space a7=V·k10x
(8) Z→Z−1 ATP-dependent ion pumps pump Ca2+ of cytosol back

into the ER
a8 = V · k11z

z + K12
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