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Dynamical behaviors of unidirectionally, linearly coupled as well as isolated calcium subsystems are
investigated by taking into account the internal noise resulting from finite system size and thus small
numbers of interacting molecules. For an isolated calcium system, the internal noise can induce stochastic
oscillations for a steady state close to the Hopf-bifurcation point, and the regularity of those stochastic
oscillations depends resonantly on the system size, exhibiting system-size resonance. For the coupled system
consisting of two subsystems, the system-size resonance effect observed in the subsystem subject to
coupling is significantly amplified due to the nontrivial effects of coupling.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, the influence of internal fluctuations on intrinsic
dynamics has been intensively studied in biochemical processes,
such as in calcium signaling [1–3], genetic regulations [4], circadian
rhythms [5], and neuron spikings [6,7]. The investigation of internal
fluctuations in nonlinear systems has led to the emergence of novel
concepts such as system-size resonance (SSR). So far, mainly two
types of SSR have been reported. One is that the behavior of an array
of coupled noisy dynamical elements is the most ordered when the
number of elements is optimal [8–10]. The other is that internal
noise originating from the random fluctuations in finite-size
biochemical systems are used to extract coherent signals and there
are the strongest periodicities at a certain system size [11–13]. For
instance, ion channel clusters of optimal sizes can enhance the
encoding of a subthreshold stimulus [11], and optimal intracellular
calcium signaling appears at a certain size or distribution of the ion
channel clusters [12,13]. Recently, there has been increasing interests
in coupled oscillators. Especially interesting is the phenomenon of
array-enhanced coherence resonance (AECR), where the coherence
can be significantly improved when the noisy excitable elements are
coupled [14–16]. The influence of internal noise has been taken into
account in coupled oscillators in biosystems [17–19]. For example,

conductance noise induces frequency and phase synchronization in
populations of weakly coupled neurons [17]. Internal noise resulting
from finite system size makes the doublets of calcium oscillators
synchronized [18,19]. Intercellular calcium signals are propagated in
multicellular hepatocyte systems as well as in the intact liver. Some
interhepatocyte Ca2+ signals are unidirectional for a given agonist
[20]. However, little work has been done forward the understanding
of the influences of coupling on the SSR phenomenon.

As the second messenger, calcium ions play an important role in a
variety of cell types. Their oscillations control the birth, life, death of
cell, tune the living process of cell, and enhance the efficiency and
specificity of gene expression [21]. Calcium ion is therefore an integral
part of the information-processingmachinery in living organisms, and
its diverse functions have been studied intensively [22–24]. Moreover,
SSR phenomena have been achieved in calcium systems [1,2].
Nevertheless, to the best of our knowledge, influences of coupling
on the SSR behavior in calcium system have gained a little insight.
While many models have been developed to explain calcium
oscillations, most of these models focus on the simple periodic
oscillations [25,26] and only a fewmodels are able to display complex
periodic oscillations.

In this research, the Kummer model [27] was adopted to gain
more insight into the influence of internal noise. This model is
capable of displaying both simple and complex dynamic behavior
[27]. By constructing a mesoscopic stochastic model, calculations
show that the internal noise originating from finite system size is
able to extract an inherent periodic signal of the system in a
resonant manner at the point close to the supercritical Hopf
bifurcation, indicating the occurrence of SSR. Additionally, the
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phenomenon of the SSR also appears in the periodic bursting regime
due to the influence of internal noise. Later, two such calcium
systems are coupled unidirectionally to explore how the SSR
behavior changes with the variation of the coupling strength. It
was found that SSR behavior still exists in each subsystem in the
presence of coupling, and the SSR effect of the subsystem is
significantly enhanced by increasing the coupling strength. This is
an essential difference from the work done by Xin et al. [28], where
the subsystems are bidirectionally coupled.

2. Model description

The model used here is able to display simple and complex
behavior of calcium, depending on the kinetics of the receptor
complex i.e., the agonist-specific receptor [29]. After the binding
of an agonist to the extracellular side of a membrane-bound
receptor molecule, the Gα subunit at the intracellular side of the
receptor-coupled G-protein is activated. The activated G-protein
in turn stimulates a phospholipase C (PLC), which leads to the
production of IP3, which diffuses through the cell and binds to
receptors at the endoplasmic reticulum (ER). This leads to the
liberation of calcium ion from endoplasmic reticulum and in some
cases to the inflow of calcium ion from extracellular space [27].
The model of a single cell can be described by the following
equations:

dw
dt

¼ k1 þ k2w� k3wx
wþ K4

� k5wx
wþ K6

;

dx
dt

¼ k7w� k8x
xþ K9

;

dy
dt

¼ k10xyz
zþ K11

þ k12xþ k13w� k14y
yþ K15

� k16y
yþ K17

;

dz
dt

¼ � k10xyz
zþ K11

þ k16y
yþ K17

;

ð1Þ

where w denotes the concentration of active Gα subunits of the G-
protein, which are responsible for the activation of PLC. x refers to
the concentration of active PLC. y is the concentration of free
calcium ions in the cytosol, and z denotes the concentration of
calcium in the ER. More details of the model can be found in Ref.
[27]. Parameter values used in this study are: k1=0.09, k3=0.64,
k4=0.19, k5=4.88, k6=1.18, k7=2.08, k8=32.24, k9=29.09, k10=5.0,
k11=2.67, k12=0.7, k13=13.58, k14=153.0, k15=0.16, k16=4.85, and
k17=0.05. k2 is the concentration of the agonist and is selected as the
control parameter.

Deterministic equations could correctly describe the dynamics of
the processes that involve macroscopically large quantities. When
using the deterministic equations, one computes continuous con-
centrations of the participating species. However, biochemical
reactions in the cell involve only a small number of molecules due
to small cell volume. Interactions of a small number of molecules
demand a stochastic approach, because internal fluctuations cannot
be neglected anymore [30]. Biochemical reactions in the cell are
governed by a chemical master equation, which is the basis for
chemical simulation, but difficult to be solved analytically. The exact
stochastic simulation algorithm introduced by Gillespie [31] has
been widely used, which stochastically determines what the next
reaction step is and when it will happen according to the transition
probability of each reaction step. It has to be addressed that this
model is a simplified one and does not include all the processes that
are know to occur in the calcium system. However, the basic
dynamical characteristics are caught in this model. Furthermore, in
Kummer's following work, he has used the exact stochastic
simulation (ESS) method to perform stochastic simulation with the

core model [29]. In accordance with ESS method, the number of
active Gα units is introduced asW, the number of active PLC as X, the
number of calcium ions in the cytosol as Y, and the number of
calcium ions in the ER as Z. As is described in Ref. [27], the model
was constructed on the basis of previous experimental observations
and data like those shown in Figs. 1 and 2 in Ref. [27], where the
quantity is between 0 and 1000, and the unit of the calcium
concentration is nM. In the present work, the results of calcium
concentration by deterministic simulations are between 0 and
10. Therefore, the unit μM for concentration and μm3 for the volume
are chosen to give qualitative discussion. The concentration of the

reactants are w ¼ W
L �106

V�10�15 ¼ W
VL � 1021 AMð Þ; x ¼ X

VL � 1021 AMð Þ; y ¼
Y
VL � 1021 AMð Þ and z ¼ Z

VL � 1021 AMð Þ, where L is the Avogadro's

number. The volume V is used to convert concentrations into
numbers of molecules and then regulate the intensity of internal
noise. According to the model biochemical reactions in the cell can
be grouped into eleven processes for the current model, and the
corresponding transition probabilities for the processes are listed in
Table 1. a1…a11 are transition rates, as are described in Table 1, where
several reaction progresses have been eliminated according to the
deterministic model.

The exact stochastic simulation algorithm can account for the
internal noise exactly, but it is too time consuming when the system
size is large. The chemical Langevin (CL) method [32] has proven to be
an efficient simulation algorithm [33–35] to take internal noise into
account if a macro-infinitesimal time scale exists in the system. CL
equations for the current model are described as

dW
dt

¼ a1 þ a2 � a3 � a4ð Þ þ ffiffiffiffiffi
a1

p
n1 þ

ffiffiffiffiffi
a2

p
n2 �

ffiffiffiffiffi
a3

p
n3 �

ffiffiffiffiffi
a4

p
n4ð Þ;

dX
dt

¼ a5 � a6ð Þ þ ffiffiffiffiffi
a5

p
n5 �

ffiffiffiffiffi
a6

p
n6ð Þ;

dY
dt

¼ a7 þ a8 þ a9 � a10 � a11ð Þ
þ ffiffiffiffiffi

a7
p

n7 þ
ffiffiffiffiffi
a8

p
n8 þ

ffiffiffiffiffi
a9

p
n9 �

ffiffiffiffiffiffiffi
a10

p
n10 �

ffiffiffiffiffiffiffi
a11

p
n11ð Þ;

dZ
dt

¼ a11 � a7ð Þ þ ffiffiffiffiffiffiffi
a11

p
n11 �

ffiffiffiffiffi
a7

p
n7ð Þ:

ð2Þ

Where ξi = 1,…,11(t) are Gaussian white noises with 〈ξi(t)〉=0 and
〈ξi(t)ξj(t')〉=δijδ(t− t'). a1…a11 are transition rates, as are described in
Table 1, where several reaction progresses have been eliminated
according to the deterministic model. According to the relationship

Table 1
Stochastic transition processes and corresponding rates

Transition
processes

Description Transition rates

(1)W→W+1 The spontaneous activation of Gα units a1=V ·k1
(2)W→W+1 The accelerated formation of active Gα after binding

of agonist to the membrane receptor
a2=V ·k2w

(3)W→W−1 The inactivation of Gα units accelerated by active PLC
a3 ¼ V d

k3wx
wþ K4

(4)W→W−1 Negative feedback of calcium-dependent kinase on
Gα units a4 ¼ V d

k5wx
wþ K6

(5)X→X+1 The activation of PLC depends on the concentration of
active Gα units

a5=V ∙k7w

(6)X→X−1 The enzymatic inactivation of PLC
a6 ¼ V d

k8x
xþ K9

(7)Y→Y+1 The inflow of calcium from the internal stores
a7 ¼ V d

k10xyz
zþ K11Z→Z−1

(8)Y→Y+1 The influx of calcium from the extracellular Space
stimulated by IP3

a8=V ∙k12x

(9)Y→Y+1 The influx of receptor-operated calcium a9=V ∙k13w
(10)Y→Y−1 The pump of cytosol Ca2+ into the ER by ATP-

dependent pumps a10 ¼ V d
k14y

yþ K15

(6)Y→Y−1 The pump of cytosol Ca2+ into the extracellular space
by ATP-dependent pumps a11 ¼ V d

k16y
yþ K17Z→Z+1
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