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a b s t r a c t

Using the TL (Tang and Lu, 1993) method, Ornstein-Zernike integral equation is solved perturbatively
under the mean spherical approximation (MSA) for fluid with potential consisting of a hard sphere plus
square-well plus square-shoulder (HS + SW + SS) to obtain first-order analytic expressions of radial distri-
bution function (RDF), second-order direct correlation function, and semi-analytic expressions for com-
mon thermodynamic properties. A comprehensive comparison between the first-order MSA and high
temperature series expansion (HTSE) to third-, fifth- and seventh-order is performed over a wide param-
eter range for both a HS + SW and the HS + SW + SS model fluids by using corresponding ‘‘exact” Monte
Carlo results as a reference; although the HTSE is carried out up to seventh-order, and not to the first
order as the first-order MSA the comparison is considered fair from a calculation complexity perspective.
It is found that the performance of the first-order MSA is dramatically model-dependent: as target poten-
tials go from the HS + SW to the HS + SW + SS, (i) there is a dramatic dropping of performance of the first-
order MSA expressions in calculating the thermodynamic properties, especially both the excess internal
energy and constant volume excess heat capacity of the HS + SW + SS model cannot be predicted even
qualitatively correctly. (ii) One tendency is noticed that the first-order MSA gets more reliable with
increasing temperatures in dealing with the pressure, excess Helmholtz free energy, excess enthalpy
and excess chemical potential. (iii) Concerning the RDF, the first-order MSA is not as disappointing as
it displays in the cases of thermodynamics. (iv) In the case of the HS + SWmodel, the first-orderMSA solu-
tion is shown to be quantitatively correct in calculating the pressure and excess chemical potential even if
the reduced temperatures are as low as 0.8. On the other hand, the seventh-order HTSE is less model-
dependent; in most cases of the HS + SW and the HS + SW + SS models, the seventh-order HTSE improves
the fifth- and third-order HTSE in both thermodynamic properties and RDF, and the improvements are
very demonstrable in both the excess internal energy and constant volume excess heat capacity; for very
limited cases, the seventh-order HTSE improves the fifth-order HTSE only within lower density domain
and even shows a bit of inadaptation over higher density domain.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

Radial distribution function (RDF) g(r) plays two important roles
in representing the structure of fluid and relating bulk thermody-
namic properties to microscopic molecular interactions, and inves-
tigation of g(r) and thermodynamic properties of liquid and solid
substances has always been a crucial field [1]. The bulk structural
and thermodynamic properties are not only fundamental to phase
equilibrium calculations of bulk fluid, but also a basic precondition

for constructing the grand potential functional approximation, the
most basic element in a classical density functional theory (DFT)
approach. Although the bulk Helmholtz free energy and bulk
second-order direct correlation function c(r) are well known for a
long time to play important roles in constructing the free energy
functional approximation [2], in a recent publication [3], one of
the present authors illustrates that direct incorporation of the
RDF information into the functional approximation improves obvi-
ously the validity of the latter. Efficient ways to find the fluid g(r)
with reliable accuracy and with less calculation include (i) a so-
called Ornstein-Zernike (OZ) integral equation [4], which relates
a total correlation function denoted by h(r)=g(r)-1 to the c(r); in
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this approach, accuracy of the RDF depends on the bridge function
approximation used. (ii) Via Percus’ test particle method [5]. Here
one solves for the equilibrium density profiles in the presence of an
external potential that represents a test bulk particle located at the
origin. It can be shown that these profiles, when normalized by the
bulk density, are the RDF. In this approach, the accuracy of the RDF
depends on the grand potential functional approximation, whose
minimization gives the Euler–Lagrange equations used to calculate
the inhomogeneous equilibrium density profiles. (iii) A coupling
parameter series expansion (CPSE) [6], whose higher-order trunca-
tion could be easily achieved using numerical solution of the OZ
integral equation. Analytic expression of the RDF is of significance
as it can, by help of the OZ integral equation, give analytic expres-
sion of the c(r), and can, by help of integrating the molecular
potential function weighted by the RDF, give analytic expressions
of excess internal energy Uex, excess Helmholtz free energy Fex,
and other thermodynamic quantities. Approximate and analytic
methods are given enough attention in statistical mechanics com-
munity [7]. Analytically solving the OZ integral equation under cer-
tain bridge function approximation is reliable and common
approach to acquire analytic RDF and c(r) [4].

Tang and Lu (TL) propose a method to solve the OZ integral
equation for both pure fluids and mixtures [8] with potential con-
sisting of a hard core repulsion with an arbitrary tail under a Per-
cus-Yevick (PY) approximation or a mean spherical approximation
(MSA) by combining the perturbation theory with the application
of the Hilbert transform. They find that each perturbation term
can be solved analytically through the Hilbert transformwith oper-
ations in the k-space or s-space, representing the Fourier and
Laplace transforms, respectively. It is found that the first-order
MSA solution dominates in the thermodynamics and structures of
the hard sphere (HS)+Yukawa and HS + square well (HS + SW)
model fluids, and is found rather successful to approximate the full
MSA solution. Note that these studies would have been much more
cumbersome had they been performed by the full MSA solution.

In the TL method, there are three of the most encountered func-
tions in the solution—g(r), c(r), and a factorization function, which
are internally convoluted. At the initial stage, the first-order MSA
solution is not fully completed as the studies were all targeting g
(r) and ignoring the two other functions. By applying the Hilbert
transform, the first-order factorization and c(r) are analytically
obtained [9,10], with emphasis on the MSA for the HS + Yukawa
and HS + SW fluids. The TL method is elaborated upon further,
and a new approach for analytic Laplace inversion to obtain expli-
cit g(r) expression in a compact and consistent manner is proposed
[11]; the proposed approach can yield g(r) values directly in any
number of shells corresponding to any r values and provide an
extraordinary contrast with analytic efforts reported in literature
[12–17], all of which are confined to a limited number of shells
and to the system of hard spheres, and whose extension to a large
number of shells is prohibitive in practice.

The TLmethod had been applied to several typical model poten-
tials [8,9,11,18,19], including the hard sphere, sticky hard sphere,
HS + Yukawa, HS + SW, Lennard-Jones and Kihara; in these works,
the authors focus on the g(r) and several of the thermodynamic
properties. Due to lack of comprehensive comparison between
the first-order analytic expressions and computer simulations, it
is still unclear how far and how precise the first-orderMSA solution
accords with the ‘‘exact” simulation results.

Potential models consisting of a HS repulsion at close inter-par-
ticle separation accounting for the essential impenetrability of the
particles, an attractive well at short distances arising from the
polymer-induced depletion attraction, plus a soft repulsion at lar-
ger distances (inhibiting the vapor-liquid transition which would
take place if only the attractive well were present) can serve to

model the effective interactions in solution of colloidal particles
in the presence of nonadsorbing polymers or electrolyte solutions.
In some alkali metals [20] and alloys [21], the effective interionic
pair potentials have a similar form, to some extent. It has been
found that fluids with potential models having this general shape
may be in an inhomogeneous state with particles arranged in clus-
ters or stripes [22] at low enough temperatures. These kinds of pat-
terns have been observed [23] experimentally and also have been
found [24] in computer simulations. The simplest model potential,
which has the above mentioned general shape, is the so-called HS
+ SW + square shoulder (SS) potential. The HS + SW + SS model
reduces to the HS + SW model by adjusting the parameters of the
former model. Because of its simplicity, the HS + SW model has
served as models of a wide variety of physical systems including,
e.g., He, Ne, Ar, H2, CO2, CH4, C2H6, n-pentane, and n-butane, and
to capture the essential features of the interactions found in col-
loidal systems; moreover, simulation study had confirmed the
presence in the HS + SW system of the Yang-Yang anomaly
expected and experimentally found for asymmetric fluids [25].
Aim of the present work is to apply the TL method to solve the
OZ integral equation for a single component fluid interacting
through the HS + SW + SS potential. The first-order MSA analytic
expressions for g(r), c(r), and semi-analytic expressions for com-
mon thermodynamic properties such as compressibility factor Z,
Uex, Fex, constant volume excess heat capacity Cex

V , excess chemical
potential lex, and excess enthalpy Hex are obtained and compared
with corresponding simulation data available in literature and
results based on the CPSE to third-, fifth-order and a high temper-
ature series expansion (HTSE) to seventh-order. The HS + SW + SS
fluid is a particular case of the so-called discrete potential fluids
(DPF), which have been extensively used within the context of both
simple and complex fluids. The structural and thermodynamic
properties of the DPF as a function of the interaction range have
been recently studied within the context of the OZ integral equa-
tion theory and computer simulations [26].

Structure of the present paper is organized as follows: in Sec-
tion 2 application of the TL method to the HS + SW + SS model is
briefly summarized and the obtained analytic expressions are pre-
sented; Comparisons with the simulation results and the CPSE to
third-, fifth-order and the HTSE to seventh-order are presented
and analyzed in Section 3. Our conclusions are summarized in Sec-
tion 4. In Appendix A and B, some expressions, which are essential
to the calculation of basic formulae in the text, and the solving pro-
cedure and final expression for c(r) are recorded.

2. Theoretical method

2.1. Analytic and semi-analytic expressions of the first order MSA
solution for the HS+SW+SS model

The HS + SW + SS model potential is of following form:

uðrÞ ¼

1; r=r < 1
�e; 1 < r=r < k1
ae; k1 < r=r < k2
0; r=r > k2

;
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where, r is diameter of the HS, and used as length unit throughout
the paper; e is energy parameter, k1 and k2 are potential range
parameters, and a measures the relative strength of the SW and
SS. By defining u1ðrÞ and u2ðrÞ:

u1ðrÞ ¼
1; r=r < 1

�e� ae; 1 < r=r < k1
0; r=r > k1

;
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