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a b s t r a c t

This paper considers the evolution of a polydisperse polymerizing system comprising g1; g2 . . . – mers car-
rying /1;/2 . . . functional groups reacting with one another and binding the g-mers together. In addition,
the g-mers are assumed to be added at random by one at a time with a known rate depending on their
mass g and functionality /. Assuming that the rate of binding of two g-mers is proportional to the product
of the numbers of nonreacted functional groups the kinetic equation for the distribution of clusters (g-
mers) over their mass and functionalities is formulated and then solved by applying the generating func-
tion method. In contrast to existing approaches this kinetic equation operates with the efficiencies pro-
portional to the product of the numbers of active functional groups in the clusters rather than to the
product of their masses. The evolution process is shown to reveal a phase transition: the emergence of
a giant linked cluster (the gel) whose mass is comparable to the total mass of the whole polymerizing
system. The time dependence of the moments of the distribution of linked components over their masses
and functionalities is investigated. The polymerization process terminates by forming a residual spec-
trum of sol particles in addition to the gel.

� 2017 Elsevier B.V. All rights reserved.

1. Introduction

The coalescence processes play the central role in many physi-
cal and physicochemical processes. A hundred years ago Smolu-
chowski [1] formulated his salient equation that describes the
coagulation process in aerosols. Since then the Smoluchowski
approach found wide applications in numerous areas of physics,
chemistry, economy, epidemiology, and many other branches of
science [2–11]. Among them is the physics of polymers where
the coalescence processes are almost entirely responsible for the
dynamics of polymerization [12–15].

The most widespread model of polymerization (the Flory model
[4]) considers monomeric units carrying f functional centers that
can react with each other losing their activity after a coalescence
act. It is clear that if f � 3 the coalescing monomers form ramified
structures. The dynamics of this process is commonly accepted to
be described in terms of particle mass spectrum cðg; tÞ (the number
concentrations of g-mers in the coagulating system) [7–10]. The
spectrum obeys the Smoluchowski equation,
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¼ Iðg; tÞ þ 1
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Kðg; lÞcðl; tÞ: ð1Þ

Here g and l are the particle masses in units of a monomeric
mass. This equation is a consequence of a simple balance principle:
the increase in g-particle concentration cgðtÞ comes from the coa-
lescence of g � l and l-particles (the first term on the right-hand
side (RHS) of this equation). The second term describes the con-
sumption of g-particle by all other participants of the coagulation
process and thus enters with the negative sign. The coagulation
kernel Kðg; lÞ is the rate of coalescence of the particles containing
g and l monomers. The first term Iðg; tÞ on the right-hand side
(RHS) of this equation is the source of g-mers (the volume rate of
g-mers production).

In Ref. [9] the authors applied Eq. (1) for describing the kinetics
of free (no source, Iðg; tÞ ¼ 0) polymerization of tree–like struc-
tures. In this model the functionality of a tree–like cluster is con-
nected with the functionality f of each graph vertex:
/ ¼ gðf � 2Þ þ 2 and the coagulation kernel is proportional to the
product of the colliding clusters functionality (see, e.g., [9]),

Kðg1; g2Þ / ½g1ðf � 2Þ þ 2�½g2ðf � 2Þ þ 2� ð2Þ
In this paper we consider the evolution of a polydisperse system

of clusters comprising g-mers each of which carries / functional
groups. Each cluster is now characterized by two independent inte-
gers: its mass g in units of a monomer mass and functionality /.
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The clusters move, collide and coalesce producing a daughter clus-
ter. Only binary collisions are taken into account, It is assumed that
the coalescence results from the interaction of two functional cen-
ters located at different clusters. The centers die out on reacting.
The polymerization process thus develops along the scheme shown
in Fig. 1,

ðg1;/1Þ þ ðg2;/2Þ ! ðg1 þ g2;/1 þ /2 � 2Þ ð3Þ
In addition, the g-mers are assumed to be added at random by

one at a time with a known rate depending on their mass g and
functionality /. Assuming that the rate of binding of two g-mers
is proportional to the product of the numbers of nonreacted func-
tional groups

Kðg1;/1jg2;/2Þ / /1;/2 ð4Þ
the kinetic equation for the distribution of clusters (g-mers) over
their mass and functionalities is formulated and then solved by
applying the generating function method. In contrast to existing
approaches this kinetic equation operates with the efficiencies pro-
portional to the product of the numbers of active functional groups
in the clusters rather than to the product of their masses. The evo-
lution process is shown to reveal a phase transition: the emergence
of a giant linked cluster (the gel) whose mass is comparable to the
total mass of the whole polymerizing system. The time dependence
of the moments of the distribution of linked components over their
masses and functionalities is investigated. The polymerization pro-
cess terminates by forming a residual spectrum of sol particles in
addition to the gel.

This approach has been applied in Refs [16–18] for considering
the kinetics of coalescence of random graphs.

The paper is organized as follows. In the next Section the basic
equation and the initial conditions are formulated. In contrast to
the Smoluchowski equation the dynamics of polymerization is
now governed by the product of the functionalities of two reacting
clusters rather than their masses. Although the cluster masses may
limit the ranges of changes to the cluster functionality, a unique
mass – functionality correlation is not assumed. In Section III this
kinetic equation is reformulated in terms of the bivariate generat-
ing function. This equation is then solved exactly for zero initial
conditions. The precritical and postcritical time behavior of the
moments of mass–functionality distribution is investigated in Sect.
IV, where the critical time for the sol–gel transition is found and
expressed via the moments of the initial mass – functionality dis-
tribution and the source function. The critical behavior of the
mass–functionality spectrum is investigated in Sect. V. The exact
expression for the bivariate generating function of the residual
(t ! 1) mass – functionality distribution is derived in Sect. VI. In
Sections VII and VIII the results are summarized and discussed.

2. Basic equations

Let us imagine a collection of particles of masses g1; g2 . . . carry-
ing /1;/2 . . . functional centers (g; / are nonnegative integers) that
are able to bind two units in one. The functional centers die in this

process and their number diminishes by two. A new daughter par-
ticle carrying /1 þ /2 � 2 functional centers results from this coa-
lescence process (see Fig. 1). After a time the next particle joins
to this cluster. The process proceeds in this way, and the collection
of particles converts to a collection of clusters each of which is
characterized by its total mass g (the number of monomers in it)
and total functionality /. The clusters move chaotically. collide,
and grow as time goes ahead.

The polymerization can be considered as a chain of coalescences
of the couples of smaller clusters. In contrast to commonly known
coagulation process, each elementary polymerization act dimin-
ishes the functionality of the cluster by two. The rate of coales-
cence is assumed to be independent of the masses of colliding
clusters. This process is represented by the scheme Eq. (3), In par-
allel to coalescence, another process (the source) adds clusters by
one with the rate Iðg;/Þ.

The probability of coalescence is considered to be proportional
to the product of total functionalities of two coalescing clusters. In
the process of coalescence the functionality of each linked cluster
changes. The kinetic equation that governs the dynamics of poly-
merization looks as follows:

dcðg;/; tÞ
dt

¼ Iðg;/Þ þ ,
2
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Here , is the coagulation rate constant, Iðg;/Þ is the productiv-
ity of g-mers with functionality /; cðg;/; tÞ is the concentrations of
coalescing clusters. The summations on the RHS of this equation
over go over all positive integers g;/.

In what follows we will measure the concentration in unitsffiffiffiffiffiffiffiffiffiffiffiffi
I0;0=,

p
, time in units 1=

ffiffiffiffiffiffiffiffiffiffi
,I0;0

p
, and I in units I0;0 ¼Pg;/Iðg;/Þ. This

choice of units makes all variables and unknown function dimen-
sionless and allows us to put j ¼ 1 in Eq. (5).

Eq. (5) should be supplemented with the initial conditions,

cðg;/; t ¼ 0Þ ¼ c0ðg;/Þ: ð6Þ
wherever possible, we consider arbitrary initial conditions,
cðg;/; 0Þ ¼ c0ðg;/Þ and arbitrary source function Iðg;/Þ. Some
results are found for zero initial conditions and a separable source
function Iðg;/Þ ¼ AðgÞBð/Þ.

3. Generating function

We introduce bivariate generating functions for cðg;/; tÞ and for
Iðg;/Þ,
Fðz; n; tÞ ¼

X
g;/

cðg;/; tÞzgn/ ð7Þ

Iðz; nÞ ¼
X
g;/

Iðg;/Þzgn/: ð8Þ

The moments of the distributions cðg;/; tÞ and Iðg;/Þ are
defined as follows:

Mm;nðtÞ ¼
X
g;/

gm/ncðg;/; tÞ; Im;n ¼
X
g;/

gm/nIðg;/Þ: ð9Þ

On multiplying both sides of Eq. (5) by zgn/ and summing over
all g and / give the equation for F ,

_F ¼ I þ 1
2
ðF nÞ2 � nUðtÞF n: ð10Þ

Here and everywhere below subscripts n; z stand for the deriva-
tives over these arguments, and overdot denotes the derivative
over time. Next,

Fig. 1. Two particles of masses g1 and g2 and functionalities /1 and /2 coalesce
owing to their active centers (black squares) annihilate. Each coalescence act
conserves the total mass of the particles ðg ¼ g1 þ g2Þ and diminishes its total
functionality by two: ð/ ¼ /1 þ /2 � 2Þ
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