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a b s t r a c t

We present an algebraic, nondiagrammatic derivation of finite-temperature second-order many-body
perturbation theory [FT-MBPT(2)], using techniques and concepts accessible to theoretical chemical
physicists. We give explicit expressions not just for the grand potential but particularly for the mean
energy of an interacting many-electron system. The framework presented is suitable for computing
the energy of a finite or infinite system in contact with a heat and particle bath at finite temperature
and chemical potential. FT-MBPT(2) may be applied if the system, at zero temperature, may be described
using standard (i.e., zero-temperature) second-order many-body perturbation theory [ZT-MBPT(2)] for
the energy. We point out that in such a situation, FT-MBPT(2) reproduces, in the zero-temperature limit,
the energy computed within ZT-MBPT(2). In other words, the difficulty that has been referred to as the
Kohn–Luttinger conundrum, does not occur. We comment, in this context, on a ‘‘renormalization”
scheme recently proposed by Hirata and He.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Perturbation theory, particularly the variant due to Rayleigh
and Schrödinger [1,2], is one of the most important approaches
to finding approximate solutions to quantum–mechanical prob-

lems. In essence, one writes the Hamiltonian of interest, bH, as

the sum of an unperturbed part, bH0, and a perturbation, bH1:bH ¼ bH0 þ bH1: ð1Þ
Then, within time-independent perturbation theory, one con-
structs approximations to selected eigenstates and eigenenergies

of bH using the eigenstates and eigenenergies of bH0 (which must
be known). The key assumption in the version of time-independent
perturbation theory that is suitable for nondegenerate states is that
the zeroth-order reference state is nondegenerate. When true

degeneracies or quasi-degeneracies are present, then bH must be
prediagonalized within the relevant (quasi-) degenerate subspace

of bH0 [3–5].
In practice, perturbation theory is most powerful when a low-

order expansion suffices. The most widely used post-Hartree–Fock

method for the ground-state energy of an interacting many-elec-
tron system is second-order Møller–Plesset perturbation theory
(MP2) [6–9], which is second-order time-independent perturba-

tion theory for nondegenerate states, employing an bH0 that equals
the ground-state Fock operator [10] assuming a closed-shell sys-
tem. MP2 works best when the ground-state Hartree–Fock
HOMO–LUMO gap is, in some sense, not too small; MP2 diverges
when the HOMO–LUMO gap vanishes [11–13].

MP2 is a special case of standard (i.e., zero-temperature) sec-
ond-order many-body perturbation theory [10,14–16], in the fol-

lowing referred to as ZT-MBPT(2). In this context, bH is assumed

to consist of one- and two-body operators [14]. bH is then parti-
tioned such that

bH0 ¼
X
p

epĉypĉp ð2Þ

is a one-body operator with known spin–orbital energies ep and
associated spin orbitals up; ĉ

y
p (ĉp) creates (annihilates) an electron

in the one-electron state up. Thus, the perturbation

bH1 ¼
X
p;q

vpqĉypĉq þ
1
2

X
p;q;r;s

vpqrsĉypĉ
y
qĉsĉr ð3Þ

generally consists of one- and two-body terms. In Eq. (3), vpqrs is an
electron–electron Coulomb repulsion integral. The one-electron
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integral vpq depends on the partitioning scheme selected; for
instance, Møller–Plesset partitioning gives vpq ¼ �Prvpr½qr�nr ,
where we have introduced the notation

vpr½qr� ¼ vprqr � vprrq; ð4Þ
and nr is the occupation number of spin orbital ur in the Hartree–
Fock ground state (nr ¼ 0 or nr ¼ 1).

The ZT-MBPT(2) result for the ground-state energy is [10,16]

E0 ¼ Eð0Þ
0 þ Eð1Þ

0 þ Eð2Þ
0 ; ð5Þ

Eð0Þ
0 ¼

X
p

epnp; ð6Þ

Eð1Þ
0 ¼

X
p

vppnp þ 1
2

X
p;q

vpq½pq�npnq; ð7Þ

Eð2Þ
0 ¼ �

X
p;q

nqð1� npÞ
ep � eq

vpq þ
X
r

vpr½qr�nr

�����
�����
2

� 1
4

X
p;q;r;s

jvpq½rs�j2nrnsð1� npÞð1� nqÞ
ep þ eq � er � es

: ð8Þ

In the zero-temperature formalism, in contrast to the finite-temper-
ature formalism that is in the focus of this paper, the total particle
number, N ¼Ppnp, is a well-defined integer.

The traditional approach to extending many-body perturbation
theory to finite temperature makes extensive use of techniques
adopted from quantum field theory [14,15,17–19]. Particularly,
there is an emphasis on diagrammatic techniques, using concepts
that are not widely known in the theoretical chemical-physics
community. First steps towards introducing finite-temperature
second-order many-body perturbation theory [FT-MBPT(2)] to
the chemical-physics literature were recently taken by Hirata
and co-workers [20,21]. Motivated by the observation by Kohn
and Luttinger [22] that, in the zero-temperature limit, the mean
energy obtained within FT-MBPT(2) does not, in general, converge
to the energy E0 obtained within ZT-MBPT(2), Hirata and co-work-
ers proposed a ‘‘renormalized” version of FT-MBPT(2) [20].

The present paper is an attempt to enhance the accessibility of
finite-temperature many-body perturbation theory through an ele-
mentary, nondiagrammatic derivation of FT-MBPT(2) equations for
the mean energy and mean particle number. These equations may
be employed for describing finite or infinite electronic systems that
are in contact with a heat and particle bath. This includes investi-
gations of the electronic structure of warm dense matter [23–26].

As we will show, if ZT-MBPT(2) is applicable, i.e., if there is a
nonzero (ideally, large) HOMO–LUMO gap in the one-particle

energy spectrum of bH0, then, as the temperature goes to zero,
FT-MBPT(2) connects smoothly to ZT-MBPT(2). In other words,
the Kohn–Luttinger conundrum, which motivated the work of Hir-
ata and co-workers [20], does not exist in situations in which the
application of second-order many-body perturbation theory is
meaningful. Furthermore, we clarify in this paper the meaning of
what Hirata and co-workers call ‘‘conventional” FT-MBPT(2) [20].
In contrast to what they suggested, they did not, in fact, give an
expression for the energy. Finally, we comment on their proposed
‘‘renormalized” FT-MBPT(2).

2. Finite-temperature many-body perturbation theory

Finite-temperature many-body perturbation theory (FT-MBPT)
[14,15,17–19] is based on the grand-canonical ensemble [27].
The fundamental quantity describing the state of a system in the
grand-canonical ensemble, such that the parameters of the theory

are the temperature T (or b ¼ 1=T in suitable units), the volume V,
and the chemical potential l, is the density operator

q̂ ¼ e�bðbH�lbNÞ

ZG
: ð9Þ

Here,bN ¼
X
p

ĉypĉp ð10Þ

is the total particle number operator, and

ZG ¼ Tr e�bðbH�lbNÞ
� �

ð11Þ

is the grand partition function.
For the noninteracting reference system, the grand-canonical

density operator is given by

q̂0 ¼ e�bðbH0�lbNÞ

Zð0Þ
G

; ð12Þ

where

Zð0Þ
G ¼ Tr e�bðbH0�lbNÞ

� �
: ð13Þ

The Fermi–Dirac factor,

�np ¼ 1
ebðep�lÞ þ 1

; ð14Þ

emerges, for the noninteracting reference system, as the ensemble-aver-
aged expectation value of the spin–orbital particle number operator

n̂p ¼ ĉypĉp; ð15Þ
i.e.,

�np ¼ hn̂pi0 ¼ Tr q̂0n̂p
� �

: ð16Þ
As is well known, this is the sole meaning of the Fermi–Dirac factor
in Eq. (14). It is not a fundamental quantity of quantum statistical
mechanics; it is derived from Eq. (16) using Eqs. (12) and (13).

FT-MBPT is not a perturbation theory directly for the (mean)
energy of a given system, but for its grand partition function, Eq.
(11). To this end, note that the operator

bUðbÞ ¼ e�bðbH�lbNÞ ð17Þ
appearing in Eq. (11) has the structure of a time evolution operator
with time argument �ib (‘‘imaginary time”) and HamiltonianbH � lbN . One can, thus, define a corresponding operator in the inter-
action picture,

bU IðbÞ ¼ ebð
bH0�lbNÞ bUðbÞ: ð18Þ

This satisfies the ‘‘equation of motion” (known as Bloch equation)

@

@b
bU IðbÞ ¼ �bH1ðbÞbU IðbÞ; ð19Þ

where

bH1ðbÞ ¼ ebð
bH0�lbNÞ bH1e�bðbH0�lbNÞ: ð20Þ

At b ¼ 0, i.e., at infinite temperature, bU ¼ 1 (the identity opera-

tor) and, therefore, bU I ¼ 1. Using this point of reference, Eq. (19)
may be integrated and the resulting integral equation may be
solved iteratively. Hence, through second order we have

bU IðbÞ ¼ 1�
Z b

0
du bH1ðuÞ þ

Z b

0
du bH1ðuÞ

Z u

0
du0 bH1ðu0Þ: ð21Þ
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