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a b s t r a c t

We study ultrafast electron transfer between separated nuclei using local control theory. By imposing
electron ionization and electron transport through the continuum, different local control formulations
are used to increase the yield of retrapping the electron at the desired nuclei. The control mechanism
is based on impulsive de-excitation. Both symmetric and asymmetric nuclear arrangements are analyzed,
as well as the role of the nuclear motion.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, advances in laser technology enabled the pro-
duction of sub-femtosecond (i.e. attosecond) pulses, with frequen-
cies in the UV regime, paving the way to the development of a
new scientific domain, called Attosecond Physics [1,2]. These
pulses are so short that ionization or Auger processes can be in
principle resolved in real time; alternatively, their bandwidths
are large enough that several electronic states can be coherently
excited at the same time. Currently, attophysics techniques are
mainly used as a spectroscopic tool, to unravel ultrafast molecular
(or condensed phase) processes, by means of e.g. pump–probe
techniques.

One can observe several analogies with the field of Femtochem-
istry [3], where the pump–probe scheme was successfully used to
resolve the nuclear dynamics. After monitoring the motion of
nuclei, a natural step forward was to attempt to control the nuclear
dynamics [4], which was proposed both in the time and energy
(frequency) domain. In the first case, the control can be seen as
the search for an external, often phase-modulated field, EðtÞ, such
that a transition from the initial state jwii to a predefined target
state jwf i at a time tf is induced and typically maximized. The tar-
get state can imply the preparation of a new chemical species, for
instance, through the fragmentation of a particular bond.

In achieving this goal, one may distinguish two different strate-
gies, optimal control theory [5] (OCT) and local control theory [6]
(LCT). In OCT, the control fields are constructed employing infor-
mation on the entire dynamics from time ti to time tf , whereas
in LCT, the field is determined instantaneously, taking the system’s

response into account. Different local control schemes have found
many applications in molecular physics [7–23].

The main purpose of this work is to apply local control tech-
niques to attosecond processes, involving the motion of electrons.
The control of the electron processes is a challenge due to the
velocity at which the electron moves and disperses, particularly
when the electron ionizes. However, attosecond pulses can be seen
as the ideal tools, acting very locally in time and offering wide
bandwidth to span both continuum and bound states. Presently,
the experimental techniques that allow to modulate attosecond
pulses are not yet developed. However, the theoretical anticipation
is timely, as it helps determining the physical resources that might
be necessary in order to exert this control.

Within this scientific context, our goal is to control the electron
transfer between two separated protons, mainly aided by local
control methods. This elementary process can constitute an impor-
tant step toward the control of many chemical reactions involving
charge rearrangement. In this work the electron transfer is not
mediated by nuclear motion. Hence, it relies on fast processes
through the ionization continuum. The essential step involves the
photoassociation of the electron colliding with the target proton.
In some respects, this work complements studies of photoassocia-
tion between neutral atoms in slow collision [24,25].

One ultimate motivation is to determine the laser resources
necessary to enhance the yield of reversible quantum transitions
between bound states and ionized states, which is an essential
ingredient in attophysics [1,2]. Our work should be regarded as a
tentative step towards that goal as we use simplified models where
the electron is treated in a single dimension.

The paper is organized as follows. In Section 2 we introduce the
model Hamiltonian and describe the numerical methods applied to
interpret the control mechanisms. In Section 3 we investigate
under which conditions one can maximize electron transfer
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between two protons largely separated within the framework of
local control theory. We consider impulsive ultrafast processes
that occur in few femtoseconds. We also analyze the effect of the
nuclear dynamics onto the yields. Finally, Section 4 is the
conclusions.

2. Numerical methods

We need to use a consistent model for treating both continuum
and bound electronic states in a system with a single electron and
two nuclei. As a first approximation, we use a 1-D Hamiltonian,
where the electron is constrained to move in the molecular axis z
driven by a linearly polarized external field, EðtÞ. Neglecting small
mass polarization terms, the Hamiltonian in the length gauge is
(atomic units are used throughout unless otherwise stated)

H ¼ �1
2

d2

dz2
þ Vðz;RÞ þ zEðtÞ ð1Þ

For this reduced dimensional study the internuclear distance R is
fixed and the electron-nuclei potential is modeled by a soft-core
Coulomb potential [26]

Vðz;RÞ ¼ � Q1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzþ aRÞ2 þ e21
� �r � Q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðz� bRÞ2 þ e22
� �r þ Q1Q2

R
ð2Þ

where Qi are the nuclear charges (QHe ¼ 2 and QH ¼ 1 a.u.), a and b
account for the relative distances of the nuclei with respect to the
center of mass, and ei are smoothing parameters. In the case of
Hþ

2 , a ¼ p ¼ 1=2 whereas for e.g. HeH2+, a ¼ mp=ðmp þmaÞ ¼
0;2012 and b ¼ ma=ðmp þmaÞ ¼ 1� a ¼ 0:7988 [27]. The smooth-
ing parameters were chosen as e1 ¼ e2 ¼ 1 for Hþ

2 and
e1ðHeÞ ¼ 0:705; e2ðHÞ ¼ 1:414 for HeH2+.

This model has been extensively applied as a first qualitative
step to analyze ionization processes in Hþ

2 and high-harmonic
spectra [28,29], as well as electron-nuclear dynamics [30–33].
One can easily extend the calculation to include the nuclear motion
by removing the constraint in R and by adding the internuclear
kinetic energy, as explained later. For the laser-controlled dynam-
ics shown in this work, the 2-D calculations give quantitatively the
same results as the 1-D model. Initially, we assume a fixed nuclei
approximation, where an hydrogen atom and a proton, or the He
and H nuclei, are largely separated. Two different ways to achieve
electron transfer applying LCT are considered. In the first one, the
objective is mathematically expressed as the population in a target
state jwf i, constructed as a wave function localized at the nuclei
where we want the electron to be recaptured.

Defining the projector PT ¼ jwf ihwf j, the rate of population
transfer into the target state is

d
dt

hPTi ¼ ih½HðtÞ; PT �i ¼ iEðtÞh½�l; PT �i
¼ EðtÞ2I hWðtÞjljwf ihwf jWðtÞi� � ð3Þ

Hence, a control field of the form

EðtÞ ¼ kI hWðtÞjljwf ihwf jWðtÞi� � ð4Þ
where I stands for the imaginary part andWðtÞ is the wave function
of the system, guarantees monotonic increase in time of population
in the target state [34,35].

In the second LC protocol, we minimize the energy of the elec-
tron once it moves out in the ionization continuum, such that the
electron can be stopped and retrapped in the further nuclei. A suf-
ficient condition to reduce the energy of the system upon the inter-
action with an external field is that the expectation value of H0 (the
Hamiltonian in the absence of the external field) decreases as a

function of time or, equivalently, that its time derivative (the
energy rate) is lower than zero. Using the time dependent
Schrödinger equation (TDSE) the rate is evaluated as

d
dt

hH0i ¼ i ½HðtÞ;H0�h i ¼ iEðtÞ ½�l; T�h i

¼ EðtÞ 1
i2m

d2l
dz2

þ 2
dl
dz

d
dz

 !* +
ð5Þ

In the special case of a linear dipole moment, i.e., l ¼ qz (with q
being a constant), Eq. (5) takes the simple form

d
dt

H0h i ¼ EðtÞ q
m

ph i ð6Þ

Hence, one can reduce the energy of the system choosing a field
proportional to the expectation value of the momentum [36–38],

EðtÞ ¼ kf ðtÞhWðtÞjpjWðtÞi ð7Þ
with k < 0.

In both cases k enters as a free parameter that measures the
strength of the laser interaction. k is found numerically by trial
and error. In Eq. (7) we include a positive sine square envelope
function f ðtÞ that forces a time-delay in the action of the control
field, to avoid minimizing the energy before the electron has time
to fly over the outer nuclei.

In the homonuclear (symmetrical) system, one has to take
superpositions of the ground and the first excited electronic states
of the Hamiltonian in order to construct the initial and target local-
ized states,

wL1=R1
¼ ðw1 � w2Þ ð8Þ

where wL1 is the lowest energy wave function localized at the left
proton (left potential well) of Eq. (2) and wR1 is the target wave func-
tion localized at the right potential well.

In general, in our simulations we assume that the initial state is
already excited, that is, wL is multiplied by an exponential factor
that gives an initial momemtum in the positive direction

Wðz;0Þ ¼ wL1 ðzÞeikez ð9Þ
In addition, to initiate the LCT approach one needs a small

‘‘seed” of population in the right potential well (the target state),
which we fix as � 0:3%. Once the local control field is found, this
‘‘seeded” population is no longer needed, and the simulations
shown in the results imply 100% population in the ground (local-
ized) state at initial time.

The numerical results are obtained by solving the TDSE with the
Split-Operator method [39–41] with time steps of Dt ¼ 0:01 a.u. A
grid of 256 points spanning from z ¼ �80 to z ¼ 80 a.u. is used for
the electronic coordinate. Imaginary (‘‘optical”) potentials [42,43]
absorb the outgoing wave functions avoiding reflection on the grid
boundaries and allowing to measure the ionization probability. The
eigenstates w1;2 from Eq. (8) are computed using the Fourier Grid
Hamiltonian method [44]. The dynamical mechanism of the trans-
fer is studied by analyzing the approximate phase-space represen-
tation of the wave functions at different times, using the Husimi
transformation [45].

Finally, to study the role of the nuclear motion in the control of
the electron transfer, 1þ 1D calculations were performed using the
full Hamiltonian of Eq. (1) including the nuclear kinetic term. The
initial wave packet is then the product of the electronic wave func-
tion times a nuclear Gaussian wave packet wnucðRÞ, centered at the
left nuclei.

In this case, we use a grid of 1024 points ranging from R ¼ 0:1 to
R ¼ 150 a.u. for the nuclear coordinate and 256 points from
z ¼ �80 to z ¼ 80 for the electronic coordinate.
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