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a b s t r a c t

Random-phase-approximation (RPA) methods have proven to be powerful tools in electronic-structure
theory, being non-empirical, computationally efficient and broadly applicable to a variety of molecular
systems including small-gap systems, transition-metal compounds and dispersion-dominated com-
plexes. Applications are however hindered due to the slow basis-set convergence of the electron-corre-
lation energy with the one-electron basis. As a remedy, we present approximate explicitly-correlated RPA
approaches based on the ring-coupled-cluster-doubles formulation including exchange contributions.
Test calculations demonstrate that the basis-set convergence of correlation energies is drastically accel-
erated through the explicitly-correlated approach, reaching 99% of the basis-set limit with triple-zeta
basis sets. When implemented in close analogy to early work by Szabo and Ostlund [36], the new explic-
itly-correlated ring-coupled-cluster-doubles approach including exchange has the perspective to become
a valuable tool in the framework of symmetry-adapted perturbation theory (SAPT) for the computation of
dispersion energies of molecular complexes of weakly interacting closed-shell systems.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wave-function methods based on molecular orbitals suffer
from the slow convergence of the correlation energy with respect
to the size of the basis set. While the reference energy converges
exponentially with increasing cardinal number X [1], much slower
asymptotics proportional to X�3 are found for the correlation
energy [2],

jEcðXÞ ¼ Ecð1Þ þ a=X3: ð1Þ
The power law describes the convergence of the correlation

energy EcðXÞ, obtained within a basis of cardinal number X,
towards the basis-set limit Ecð1Þ. It was shown to fit for a variety
of perturbation-theory and coupled-cluster methods [3] as well as
for the random-phase approximation (RPA), which is a post-Kohn–
Sham (KS) approach relying on molecular orbitals and which has
recently attracted much attention [4–7]. RPA has become popular
as a computationally efficient and broadly applicable method, cap-
turing long-range dynamic [8,9] as well as static correlation [10].
Applications on larger molecules are however hindered due to its
slow basis-set convergence. In general, basis sets of quadruple-zeta
quality are found to be necessary if at all sufficient to reach satis-

fying accuracy [11,12]. However, several strategies to accelerate
convergence and thus avoid the use of high angular momentum
basis functions exist.

Firstly, as convergence is smooth, asymptotic laws like in Eq. (1)
allow to set up extrapolation schemes [3,13–15]. Fabiano et al. for
example applied various extrapolation formula to post-KS RPA cal-
culations [12], investigating test sets of first- and second-row
molecules using Dunning’s correlation-consistent basis sets
cc-pVXZ [16–18]. They showed that two-point extrapolation
schemes using quintuple- and sextuple-zeta basis sets with opti-
mized parameters achieve an accuracy of 2 mEh for RPA correlation
energies, which has to be compared with an error of 10 mEh for
standard septuple-zeta results. Extrapolation including quadru-
ple-zeta basis sets is however found to be of too low quality, and
Fabiano et al. therefore recommend to use either semiempirical
extrapolations or basis sets with higher cardinal numbers.

Secondly, another strategy to circumvent the intrinsically slow
basis-set convergence of wave-function methods is given by range
separation [19]. Range-separated RPA methods [20–22] partition
the Coulomb electron–electron interaction into a short-range den-
sity-functional-theory (DFT) and a longe-range RPA contribution.
Convergence is accelerated as the short-range part of the correla-
tion hole, whose accurate description requires high-angular
momentum basis functions, is now treated within density-func-
tional theory. Franck et al. showed that, for range-separated
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approaches, both the short- and long-range parts converge expo-
nentially with the maximum angular momentum quantum num-
ber [23]. However, modifying the Hamiltonian by range
separation always implicates a change of the corresponding
basis-set limit.

Hence, aiming to accelerate convergence without changing the
underlying correlation method requires to go for a third strategy:
explicitly-correlated (or F12) wave-functionmethods [24]. The idea
of F12 methods is to improve the description of the Coulomb hole
by taking into account geminals which explicitly depend on the
inter-electronic distance [25,26]. By doing so, correlation energies
converge proportional to X�7 [27], which allows to investigate
basis-set limits without falling back onto large basis sets. In our
recent paper on explicitly-correlated direct RPA (dRPA) [28], we
demonstrate that triple-zeta basis sets are sufficient to reach sextu-
ple-zeta accuracy for atomization energies. For interaction energies,
the gain in terms of the possible reduction of the basis-set size is
about one cardinal number. For interaction energies, for example,
quadruple-zeta quality is reached with triple-zeta basis-set size.

Our investigations presented in Ref. [28] were restricted to the
dRPA approach, in which exchange contributions are neglected. In
consequence, the method suffers from the self-interaction error
leading to an incorrect description of bond dissociation as well as
a strong overestimation of correlation energies. For conventional
RPA, different exchange RPA methods have been developed as a
remedy, based on perturbation theory [29–31], the adiabatic con-
nection [32,33], or the equivalence of RPA with ring-coupled-clus-
ter-doubles theory [34–39]. Among the latter approaches are two
approximate rCCD variants developed by Szabo and Ostlund in
the 1970s to calculate correlation energies for interacting closed-
shell systems [36,37]. Recently, Toulouse and Mussard et al.
adopted Szabo and Ostlund’s ideas to set up analogous rCCD vari-
ants with range separation [40,41]. Their findings, based on the
examination of rare-gas dimers, weakly interacting complexes,
atomization energies and reaction barrier heights, proved these
approximate rCCD approaches as very promising for general chem-
ical applications.

Based on the work by Toulouse and Mussard et al., we have
developed analogous explicitly-correlated rCCD approaches for
closed- and open-shell systems, denoted rCCD(F12). In contrast
to the direct counterpart, drCCD(F12) [28], spin-flipped excitations
have to be taken into account for open-shell rCCD(F12) theory, and
spin adaptation in terms of singlet and triplet amplitudes is
required for the corresponding closed-shell formulation based on
spatial orbitals (cf. Section 2.1). The thereby entailed triplet and
spin-flipped instabilities can however be avoided when introduc-
ing the approximations suggested by Szabo and Ostlund (cf. Sec-
tion 2.2). Furthermore, the geminal amplitudes account for
antisymmetry (cf. Section 2.3) in such a way that all rCCD(F12)
variants yield the MP2-F12 correlation energy at second-order per-
turbation theory (cf. Section 2.4). The derived rCCD(F12)
approaches were implemented in the Turbomole program package
based on the already available drCCD(F12) code [42], allowing for
the analysis of the basis-set convergence of correlation and
atomization energies for an exemplary test set of small molecules
(cf. Section 3).

For the future, we plan to employ rCCD(F12)-based approaches
for the computation of dispersion-energy contributions in the
framework of (KS-based) symmetry-adapted perturbation theory
(SAPT) [43–46]. In some of our recent work [47,48], we have cor-
rected the basis-set-incompleteness error in SAPT dispersion ener-
gies by adding corrections computed at the level of explicitly-
correlated second-order perturbation theory (MP2-F12) [49], but
rCCD(F12)-based approaches could provide much more accurate
corrections for basis set incompleteness.

2. Theory

2.1. Symmetry of the ring-coupled-cluster-doubles amplitudes

In their 1977 papers [36,37], Szabo and Ostlund start from a
reformulation of the RPA eigenvalue problem that is based on dou-
ble-excitation amplitudes T and the corresponding residual equa-
tion X ¼ 0, with

X ¼ TDþ Bþ ATþ TAþ TBT: ð2Þ
All terms in Eq. (2) bear the important characteristic that they

solely represent particle-hole interactions which correspond to
ring diagrams. The method is therefore, often synonymously to
RPA, called ‘‘ring-coupled-cluster-doubles” (rCCD) approach.
Depending on the definition of the matrices A and B, it is further-
more common to discriminate between the direct ring-coupled-
cluster-doubles (drCCD) and full ring-coupled-cluster-doubles
(rCCD) approaches. The direct approach neglects exchange and
the matrices A and B therefore only include Coulomb contribu-

tions, Aaj
ib ¼ hajjibi and Bab

ij ¼ habjiji. The rCCD approach, in contrast,
assumes antisymmetrized two-electron integrals,

�Aaj
ib ¼ hajjjibi ¼ hajjibi � hajjbii; ð3Þ

�Bab
ij ¼ habjjiji ¼ habjiji � habjjii: ð4Þ
Here and in the following, antisymmetrized matrices are indi-

cated with an overline and, to distinguish the direct-ring CCD
amplitudes from the ring CCD ones, we use the matrix T for the
direct-ring CCD and �T for the ring CCD amplitudes. All spin orbitals
are assumed to be real, and fi; j; . . .g denote occupied spin orbitals
while fa; b; . . .g denote virtual spin orbitals, respectively. The
matrix D represents for both drCCD and rCCD the zeroth-order
term Dijab ¼ ea þ eb � ei � ej, with the (Kohn–Sham) molecular
orbital energies e. Note that the above notation should be
understood in such a manner that the row (ia) and column (jb)
indices of the matrices in Eq. (2) are, for example, as follows:

ðAÞia;jb ¼ Aaj
ib; ðTÞia;jb ¼ Tab

ij and so on, where Tab
ij is a direct ring-cou-

pled-cluster amplitude for the double substitution of the occupied
spin–orbital pair ij with the virtual pair ab.

The restriction to ring diagrams in the residual equation has the
consequence that neither the so-determined drCCD nor the rCCD
amplitudes are antisymmetric with respect to the individual
exchange of the index i with j or the index a with b, that is,
tabij – � tabji ¼ �tbaij and �tabij – � �tabji ¼ ��tbaij . This ‘‘missing anti-
symmetry” imposes important restrictions on the implementation
of open- and closed-shell rCCD, as we will see in the following.

First of all, the drCCD and rCCD correlation-energy equations,

EdrCCD
c ¼ 1

2
tr BT½ �; ð5Þ

ErCCD
c ¼ 1

4
tr �B�T
� �

; ð6Þ

are not equivalent and the rCCD correlation energy can — in contrast
to standard coupled-cluster schemes like coupled-cluster-doubles
CCD — only be formulated in terms of the antisymmetrized matrix
�B. This furthermore implies that open-shell rCCD implementations
have to rely on the spin-integrated formulation of Eq. (6),

ErCCD
c ¼ 1

4

X
IJAB

X
r;r0–r

�BIrJr
ArBr

�tBrArJrIr þ BIrJr0
ArBr0

�tBrAr
0

JrIr0 � BJrIr0
ArBr0

�tBr
0Ar

JrIr0

h i
; ð7Þ

requiring to take into account spin-flipped excitations, parameter-
ized by the amplitudes �tArBr0Ir0 Jr [50]. For spin integration, spin orbitals
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