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a b s t r a c t

A computational scheme to describe the coherent dynamics of excitation energy transfer (EET) in
molecular systems is proposed on the basis of generalized master equations with memory kernels.
This formalism takes into account those physical effects in electron-bath coupling system such as the
spin symmetry of excitons, the inelastic electron tunneling and the quantum features of nuclear motions,
thus providing a theoretical framework to perform an ab initio description of EET through molecular sim-
ulations for evaluating the spectral density and the temporal correlation function of electronic coupling.
Some test calculations have then been carried out to investigate the dependence of exciton population
dynamics on coherence memory, inelastic tunneling correlation time, magnitude of electronic coupling,
quantum correction to temporal correlation function, reorganization energy and energy gap.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The excitation energy transfer (EET) phenomena in molecular
systems often play key roles in the photophysical processes for a
wide variety of problems in biophysics, chemical physics and
materials science [1–3]. In biological context, the EET in photosyn-
thetic systems has recently attracted much attention, in particular
in association with the quantum coherence of exciton transfer
[4,5]. As for the optoelectronic device applications employing
organic semiconductors such as crystalline tetracene, the com-
bined dynamics of singlet and triplet EETs are of great interest
[6,7]. Fluorescence resonance energy transfer (FRET) provides
another important research field for the application to bioimaging
[8]. In order to understand the underlying mechanisms for these
EET phenomena, one needs a comprehensive description concern-
ing the dependence of exciton dynamics on relevent physical
parameters in exciton-bath system such as the electronic coupling,
the energy gap and the reorganization energy [1–3]. Although the
model calculations in realistic situations are often very compli-
cated, we would like to find a general formalism to allow for
first-principles calculations to appropriately reproduce or predict
the experimental observations. In addition to the theoretical eluci-

dation based on the conventional modeling employing the physical
parameters above, we are also interested in the effects associated
with the non-Condon, inelastic electron tunneling [9,10] and the
quantum–mechanical features of nuclear motions [10–13], which
have not been investigated well in previous studies.

The present study is thus focused not on the rate constant but on
the time-dependent populationdynamics of EET in order to describe
the quantum coherence [14–27] as observed in photosynthetic sys-
tems such as the Fenna–Matthews–Olson (FMO) protein [28–31].
We start with the Liouville–von Neumann equation for the density
operator and derive the generalizedmaster equation for the exciton
population [1], in which the memory kernel [32–34] plays a pivotal
role. For the calculations of the memory kernel, we pay attention to
the following issues: First, it has been recognized [12,13,35] that the
electronic coupling, which causes the state transition and can be
evaluated quantum–mechanically, dynamically fluctuates in its
magnitude significantly due to structural fluctuations in biomolecu-
lar systems, as observed both in the cases of electron transfer and
excitation energy transfer. This fact, in turn, would not allow the
use of a constant value of the electronic coupling between donor
and acceptor (Condon approximation) [36–38], and consequently
would lead to the description of the inelastic effect of tunneling
electrons [9,10] in which the temporal correlation function of the
electronic coupling plays an essential role. The second issue, the
nuclear effect described in terms of the Franck–Condon factor, is
then taken into account in the theory [10–12] so that the nuclear
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degrees of freedom are dynamically coupled with the electronic
ones. If we could quantitatively evaluate the spectral density [1–3]
representing the electron–phonon or system-reservoir interactions
through realistic molecular dynamics simulations, we could also
account for the nuclear quantum effect [10–12] on the EET. Third,
by considering the spin degrees of freedom of excitonic wave func-
tions in terms of the four-electron model in the present study, we
could describe the singlet–singlet and triplet–triplet excitation
energy transfers [39–41] in a comprehensivemanner. Thus, through
a full account of known physical effects as much as possible, we
could perform a very quantitative description for the coherent/inco-
herent dynamics of EET in molecular systems in such a way that is
compatible with ab initio simulations.

In the following Section 2, the details of the present theory are
illustrated so that the basic equations for describing the EET
dynamics are derived in terms of the temporal correlation function
of electronic coupling and the spectral density of the reservoir.
Numerical calculations for some simplified models are then per-
formed in Section 3 to see the dependence of EET dynamics on rel-
evant physical parameters. Conclusions are given in Section 4.

2. Theory

2.1. Generalized master equation and second-order memory kernel

Let us consider a system-reservoir Hamiltonian [1],

Ĥ ¼ Ĥ0 þ V̂ ð1Þ
with the diagonal part,

Ĥ0 ¼
X
a

Hajaihaj ¼
X
a

Ea þ HR þ VaaðZÞ½ �jaihaj: ð2Þ

Here, Ha is the vibronic Hamiltonian and HS ¼
P

aEajaihaj is the elec-
tronic system Hamiltonian with system energy Ea for eigenstate jai;
HR is the reservoir (phonon) Hamiltonian and HS�R represents the
system-reservoir interaction, which yields

VabðZÞ ¼ hajHS�Rjbi; ð3Þ
where Z refers to the reservoir coordinates.

V̂ ¼
X
a;b

ð1� dabÞVabðZÞjaihbj ð4Þ

represents the off-diagonal part of the system-reservoir Hamilto-
nian, which is assumed to be small compared to the diagonal part.

To describe the dynamics of excitation energy transfer, we con-

sider the statistical operator (or the density operator) ŴðtÞ for the
system-reservoir Hamiltonian above. In thermal equilibrium at
temperature T, it reduces to the canonical density operator,

Ŵeq ¼
X
a

Ŵa ¼
X
a

R̂aP̂a ð5Þ

with

R̂a ¼ expð�Ha=kBTÞ
trRfexpð�Ha=kBTÞg ð6Þ

and

P̂a ¼ jaihaj; ð7Þ
where kB is the Boltzmann constant and trR means the trace over
the reservoir coordinates. The projection operator ~P onto the diag-
onal part is then defined as

~PÔ ¼
X
a

R̂atrRfhajÔjaigP̂a ð8Þ

for any operator Ô, and we findePŴðtÞ ¼
X
a

PaðtÞŴa; ð9Þ

where PaðtÞ represents the time-dependent population of system
eigenstate jai.

We rely on the Liouville–von Neumann equation for the statis-
tical operator,

@

@t
ŴðtÞ ¼ 1

i�h
Ĥ; ŴðtÞ
h i

; ð10Þ

with the initial condition at t ¼ 0,

~QŴð0Þ ¼ ð1� ~PÞŴð0Þ ¼ 0: ð11Þ
The generalized master equation (GME) for PaðtÞ is then derived
with the aid of the projection operator technique [1] as

@

@t
PaðtÞ ¼

X
b

Z t

0
dsKabðsÞPbðt � sÞ: ð12Þ

The memory kernel KabðsÞ and its Fourier transform,

KabðxÞ ¼
Z 1

�1
dseixsKabðsÞ; ð13Þ

thus govern the dynamics of the population PaðtÞ.
We consider the case in which the electronic coupling between

the exciton donor and acceptor is relatively weak, thus allowing for

a use of perturbation theory. Up to the second order of V̂ , the mem-
ory kernel can be expressed in terms of the reservoir correlation
function CabðtÞ as [1]

Kð2Þ
ab ðxÞ ¼

Z 1

0
dteixt ½CabðtÞ þ Cabð�tÞ�; ð14Þ

CbaðxÞ ¼
Z 1

�1
dteixtCbaðtÞ; ð15Þ

CbaðtÞ ¼ 1
�h2

X
l;m

f aljhUaljVabðZÞjUbmij2eiðxal�xbmÞt ; ð16Þ

CbaðxÞ ¼ 2p
�h2

X
l;m

f aljhUaljVabðZÞjUbmij2dðxþxal �xbmÞ; ð17Þ

where Ual refers to the eigenfunction (eigenstate) of the Hamilto-
nian Ha with the vibrational state l, and �hxal is the eigenvalue
(energy) of Ha;

f al ¼ expð��hxal=kBTÞ
Za

ð18Þ

represents the equilibrium distribution with the partition function
Za. It is straightforward to derive the Förster [42] and Dexter [43]
formulae for the EET rate constant from Eqs. (12)–(17), as seen in
Appendix A.

2.2. Four-electron model for two-state transition

In the following, we consider a two-state transition from the ini-
tial state i ¼ a to the final state f ¼ b. In the initial state, the pigment
A is electronically excited (e) and the pigment B is in the ground (g)
state. In the final state, the pigment A is in the ground state and the
pigment B is in the excited state. The total vibronic wavefunctions
for the initial and final states are then expressed in terms of the pro-
duct of the electronic (W) and vibrational (v) parts as

Ui ¼ WAevAevðRAÞWBgvBguðRBÞ; ð19Þ
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