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a b s t r a c t

We study decay of two-exciton states of a J-aggregate that is collective in nature. We use mathematical
formalism based on effective non-Hermitian Hamiltonian suggested in nuclear theory. We show that
decay of two-exciton states is strongly affected by the interference processes in the exciton–exciton
annihilation. Our evaluations of the imaginary part of the effective Hamiltonian show that it exceeds
the spacing between real energies of the two-exciton states that gives rise to the transition to the regime
of overlapping resonances supplying the system by the new collectivity – the possibility of coherent
decay in the annihilation channel. The decay of two-exciton states varies from twice bimolecular decay
rate to the much smaller values that is associated with population trapping. We have also considered the
corresponding experiment in the framework of our approach, the picture of which appears to be more
complex and richer than it was reasoned before.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Collective mechanism of excitation of linear molecular
J-aggregates determines their unique nonlinear optical properties
[1]. Among them the N-fold enhancement of the spontaneous
emission rate and the N2 scaling of the cubic hyperpolarizability,
where N is the number of molecules in the aggregate. The reason
is the collective (excitonic) character of aggregate eigenfunctions.
The collective mechanism also results in a bistable behavior of
molecular J-aggregates [2,3], and dissipative solitons [4,5] that
arise in these structures under resonant laser excitation. These
solitons are nanosized structures, which are localized almost
within the region of a single molecule, which opens up possibilities
for creating subminiature memory cells.

The bistability and dissipative solitons predicted are strongly
affected by the process of excitonic annihilation, which plays a role
with increasing pump intensity [6–9]. Exciton annihilation in
molecular crystals was studied in Refs. [6,7], and in dye
J-aggregates in Refs. [10–12] experimentally and [13,14] theoreti-
cally. In Ref. [15] the anharmonic oscillator approach was

developed to model exciton annihilation in pigment-protein com-
plexes. Consider two-exciton excitation of a molecular aggregate.
The scheme of the exciton–exciton annihilation process through
a third molecular level [13,14] includes two steps. In the first step,
one excited molecule goes to the ground state gj i while another
excited molecule passes to the third level fj i (due to the energy
conservation). The second step is the radiationless relaxation of
the third level fj i to the ground gj i and excited ej i states of the
transition of interest. It is assumed that the third level fj i is vibro-
nic in its nature and decays very rapidly transferring its energy to
the excited ej i and ground gj i levels with the rates Cfe and Cfg ,
respectively.

In Ref. [3] an ensemble of molecular aggregates in a thin film
was considered using an effective four-level scheme, and in Refs.
[2,4,5] J-aggregates were described using a local field approxima-
tion [16], in which a chain of molecules is described by a system
of Bloch equations for one-particle density matrices. In this case,
the interaction between molecules is derived using the classical
expression for the retarding interaction between a system of
dipoles by which molecules are modeled. In addition, the above
mentioned interaction that leads to exciton–exciton annihilation
is also introduced into the system (usually phenomenologically).
As a rule, in the system of equations obtained in this way, only
two particle interactions are taken into account, which are
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presented in the factorized form, i.e., without taking into account
correlations between molecules.

However, the system of equations for J-aggregates can also be
derived from first principles. In this case, a hierarchy of mutually
coupled equations for the expectation values of products of
operators that refer to different molecules of the chain arises
[16]. This system contains expectation values beginning from one
particle and ending with N particle expectation values (N is the
number of molecules in the chain, and N � 1). An important aspect
of this problem is that the third level of molecules is a system of a
large number of vibrational sublevels, interaction with which leads
to dissipation of energy and to irreversibility of the exciton–
exciton annihilation process. If this interaction is correctly taken
into account from the first principles, the equations of motion
will acquire a number of multiparticle contributions that describe
the relaxation of the system related to the exciton–exciton
annihilation [17] but that, however, are absent in the purely
phenomenological picture. In Ref. [17] we took the two-particle
expectation values into account directly in the hierarchical system
of equations. In general, taking the interaction with a third
level of molecules into account leads to the appearance not only
of three-particle but also of four-particle relaxation terms in
equations of motion. As a consequence, the exciton–exciton
annihilation processes also result in mixing the optical transitions
in J -aggregates.

Furthermore, equations of Ref. [17] were written in the site rep-
resentation. However, the applicability of the bimolecular theory,
which implies the approach of two excitons before they annihilate,
is questionable [13,14]. Authors of earlier pioneering work [13]
obtained an insight into the possible channels of excitonic
annihilation at low temperatures, when one-dimensional excitons
become localized in the part of the aggregate due to a weak static
disorder. They proposed an alternative channel of excitonic
annihilation that was inversely proportional to the cube of the
localization length. In the present work following Ref. [13] we also
take the localization of one-dimensional excitons in the part of the
aggregate into consideration. However, in contrast to Ref. [13], we
consider rather eigenstates of the effective non–Hermitian
Hamiltonian [18] including the decay due to the exciton–exciton
annihilation, than eigenstates obtained by diagonalization of the
Hamiltonian of a J-aggregate with respect to the dipole–dipole
interaction between its molecules, Eq. (6) below. This is an
important generalization of the theory when the value of the
dipole–dipole interaction between molecules of a J-aggregate
(see Eq. (6) below) Jj j is not much larger than the probability of
bimolecular decay wa (see below). By this means the spectrum of
the problem under consideration should be found with taking
the decay due to the exciton–exciton annihilation into account.
In addition, the exciton–exciton annihilation is described by
non-diagonal relaxation matrix due to both the relaxation of
two-particle variables associated with that of three- and four-
particles variables, and using basis lmj i in which even the
relaxation of two-particle variables becomes non-diagonal. The
appropriate mathematical formalism for the description of this
physics is provided by the effective non–Hermitian Hamiltonian
[18] suggested in nuclear theory that will be used in the present
work. This formalism is highly efficient for the study of collective
states demonstrating various behaviors, the two extreme cases of
which are super-radiance by Dicke [19,20] and the population
trapping [21,18]. At the end of the 20th century it was understood
that the physics underlying super-radiance is much more general
and can find broad applications in various regions of the quantum
world [18].

For our goal, the main lesson is that the quantum states can be
coupled also through the continuum of open decay channels.
Since the continuum coupling determines the width 2a, or the

lifetime s � �h=ð2aÞ, the states become quasi-stationary and can

be characterized by a complex energy, eE ¼ E� ia. Similar to stan-
dard perturbation theory, the efficiency of coupling is determined
by the ratio of the coupling strength to the energy spacing between
the coupled states. If the width 2a is of the order of, or exceeds, the
spacing between real energies E, coupling through the continuum
turns out to be effectively strong. This transition to the regime of
overlapping resonances supplies the system by the new collectivity
- the possibility of coherent decay [18].

The paper is organized as follows. We start with the model in
Section 2. In Section 3 we consider the evolution of the two-exciton
excited states and specify the effective non–Hermitian Hamilto-
nian. Then we present the results of the numerical diagonalization
of the effective Hamiltonian and discuss them, Section 4. In
Section 5 we compare our results with previous calculations and
experiment. In Section 6, we briefly conclude.

2. Model and Hamiltonian

Consider a linear chain that consists of N three-level molecules.
Assume that the lowest state of each molecule is determined by
the state vector gj i, and the energy of this state is Eg . Correspond-
ingly, the excited state will be determined by the state vector ej i
with energy Ee. State vectors mgj i and mej i correspond to a mole-
cule that is located at site m of the chain. Using these vectors, we
can construct the following operators of creation and annihilation
for each molecule: Bm ¼ mgj ihmej is the operator that describes the
annihilation of an excitation in molecule m at level e, and
By
m ¼ mej ihmgj is the operator that describes the creation of an

excitation in molecule m to level e. Furthermore, the upper level
f of a molecule in the system of three-level molecules is a vibronic,
and, to correctly perform calculations, we should take into account
its structure. We will assume that upper level f consists of a series
of sublevels v, which correspond to different vibrational states and
which are characterized by the density of states
qðEÞ ¼PvdðE� Efv Þ necessary for the calculation of the transition
probabilities. As a result, the third state will be determined by state
vectors fvj i with energies Efv where Efv > Ee > Eg . In a similar
manner, we shall also define the following operators:
Dmm ¼ mej ihmfv j, and Dy

mv ¼ mfvj ihmej. In Ref. [17] the processes
of exciton–exciton annihilation were described by the following
Hamiltonian

Hannih ¼
X
k–l
v

VklBkD
þ
lv þ VlkDlvB

þ
k

� � ð1Þ

The two-exciton state corresponding to the excitation of sites m
and n can be written as menej i ¼ By

mB
y
n mgj i ngj i. The energy of this

state will be close to the energy kfvj i of any site k. Therefore, we
shall seek the two-exciton wave function in the form

W ¼
X
m>n

Cmn menej i
Y

k–m;n

kgj i þ
X
m;v

dmv mfvj i
Y
k–m

kgj i ð2Þ

where Cmn and dmv are the amplitudes of the corresponding states.
The evolution of two-exciton wave function W

i�h
dW
dt

¼ HW ð3Þ

is determined by the Hamiltonian

H ¼ H0 þ Hint þ Hannih ð4Þ
Here

H0 ¼
X
m

�hxme;gB
þ
mBm þ

X
m;v

�hxmfv;gD
þ
mvDmv ð5Þ

is the Hamiltonian of free molecules of a J-aggregate,
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