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a b s t r a c t

We have examined the temporal evolution of an ion pair with fully suppressed geminate recombination.
For this purpose, the Smoluchowski–Debye equation for a pure Coulomb potential with a reflecting
boundary condition on the recombination sphere has been solved numerically and analytically (in the
last case, only approximately). It has been shown that the probability of the pair non-dissociation
decreases in time roughly as a power law. We also discussed the applicability of the conductivity method
for studying the non-Langevin recombination in low mobility solids. An example of such an analysis is
given for one technical polymer. The relation of these results to the concept of the coulombic traps has
also been discussed.

� 2015 Published by Elsevier B.V.

1. Introduction

The standard approach in chemical physics for treating slow
apparent reaction rates for neutral reactants or recombination
rates for charge carriers in liquids or disordered solids in the diffu-
sive transport regime is to introduce a partially reflective boundary
condition at the reaction (recombination) sphere into the
Smoluchowski–Debye equation [1–4]. We have extensively inves-
tigated this problem regarding an evolution of isolated ion pairs
due to the Langevin recombination or the geminate conductivity
due to their polarization in an applied electric field [5–10] includ-
ing the case of the totally suppressed geminate recombination [7].
In papers [5–7] this problem has been treated analytically while in
papers [8–10] the Smoluchowski–Debye equation has been solved
numerically.

Despite the fact that Ref. [3] already reported some results
relating to the perfectly reflecting boundary for a Coulomb poten-
tial (Eqs. (45)–(47) in the paper), we believe that a more detailed
analysis of this problem concerning the time evolution of the dis-
sociation of ion pairs into free charge carriers is still appropriate.
It is even more so as Ref. [3] did not discuss the relation of this
problem to the notion of the coulombic trap and more specifically,
to the kinetics of carrier trapping and detrapping from such traps.

Recently, we discussed this problem in connection with the
studies on the recombination of charge carriers in molecularly
doped polymers [11]. As we show below, the results of this

analysis depend heavily on the consistent interpretation of the
experimental evidence presented in the last paper.

We intend to investigate the latter process in detail but in the
absence of an external electric field. There are several reasons for
choosing such an approach. First, it allows reducing an axially sym-
metric 2D-problem to a 1D radial differential equation, thus greatly
simplifying its general analysis. It is important that theoretical
results obtained in this way still retain physical substance. Time-
resolved conductivity experiments could be conducted at a small
electric field when its influence on the recombination process itself
is really negligible, yet the information gained relates directly to
the recombination mechanism. Second, theoretical data obtained
in a 1D radial differential equation (that is in the absence of the
applied electric field) presents an upper bound on the expected
ion-pair non-dissociation times since an applied electric field tends
only to shorten them. This time is an important methodological
constraint as an experimental time in the conductivity method
(both photo- and radiation induced) should greatly exceed it for
preparing an appropriate initial population of the free charge car-
riers to investigate the mechanism of the bulk recombination
(the Langevin versus non-Langevin). And finally, it allows one to
develop an approximate but rather informative analytical treat-
ment of the general problem and specifically to elucidate the nat-
ure of the coulombic traps and their dynamic properties.

2. Numerical calculations and results

We consider the classical formulation of the problem based on
the diffusion equation for the mobile hole undergoing diffusive
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motion in the presence of a pure Coulombic field due to an immo-
bile electron placed at the center of the spherical coordinate sys-
tem for appropriate initial and boundary conditions. The
equation is well-known [2]

@w=@t ¼ D @2w=@r2 þ ð2=r þ rc=r2Þ@w=@r
� �

; ð1Þ
wherewðr; tÞ is the time and spatial density of the positive charge, D
– the diffusivity, and rc – the so-called Onsager radius. At this dis-
tance, the potential energy of an electron–hole pair equals an aver-
age thermal energy. Initial condition is taken to be spherically
symmetric with a unit positive charge uniformly distributed over
a sphere of radius r0

wðr;0Þ ¼ dðr � r0Þ
4pr20

: ð2Þ

The first boundary condition stipulates that the reaction sphere
with radius ra 6 rc acts as a totally reflecting surface, so that diffu-
sion and drift currents cancel each other at any moment and no
accumulation of charge takes place on this sphere

@w=@r þwrc=r2
� ���

r¼ra
¼ 0: ð3Þ

The second boundary condition stipulates that at all times
w? 0 as r ! 1.

For a case of r0 ¼ ra, we actually mean that the former is
infinitesimally larger than the latter.

To proceed further, we use dimensionless units s ¼ Dt=r2c and
n ¼ r=rc for time and coordinate respectively.

Now, Eq. (1) becomes universal

@x=@s ¼ @2x=@n2 þ ð2=nþ n�2Þ@x=@n ð4Þ
with the initial condition (n0 ¼ r0=rc)

xðn;0Þ ¼ dðn� n0Þ
4pn20

: ð5Þ

The boundary condition takes the form

@x=@nþx=n2
� ���

n¼na
¼ 0: ð6Þ

Here x ¼ r3cw is the dimensionless charge density and
na ¼ ra=rc .

Since recombination in an ion pair is suppressed, the total
amount of positive charge in the outer region (r P ra) is always
equal to unity. We choose as an observable quantity the amount
of positive charge still residing in the Onsager sphere
(na 6 n 6 1), which effectively defines the ion pair non-dissociation
probability

XinðsÞ ¼ 4p
Z 1

na

n2xðn; sÞdn: ð7Þ

As s goes to a positive infinity, Xinðs! 1Þ ! 0 (diffusion will
finally separate an ion pair). As a check of the consistency of
numerical calculations, we used the conservation restraint

4p
Z 1

na

n2xðn; sÞdn � 1: ð8Þ

This boundary-value problem has been solved numerically as
reported earlier in [8] but this time using the Comsol Multiphysics
3.5 package. The second boundary condition at r ! 1 was realized
at rinf (effective infinity) which was chosen in such a way that fur-
ther increasing of rinf did not change the results within accuracy of
1%. The computation time of a typical variant was about 10 s.

Fig. 1 presents typical curves showing an effect of na on the time
variation of Xin under condition that n0 ¼ na. The critical value
Xin = 0.01 defines an effective ion-pair dissociation time ~s. During
this time, 99% of the initial charge (equal to unity) escapes from

the Onsager sphere. According to Fig. 1, it sharply rises from about
14 (na = 0.2) through 40 (na = 0.1) to almost 1.6 � 104 (na = 0.05).
One could also see that the steepness of the probability decay
appreciably increases as na gets smaller.

We have investigated how the size of the integration sphere
(which now replaces the original Onsager sphere) would influence
the results presented on Fig. 1. As can be seen from Fig. 2, the effect
of an integration sphere (its radius progressively increases by a fac-
tor of 1, 2 and 3 compared to the Onsager radius) is not that large
(the critical time rises by no more than twofold). This result proves
that choosing the Onsager sphere as a test-bed for evaluating time
evolution of an ion pair seems justified.

The influence of the initial position of the generation sphere (n0
changes) on the time evolution of an ion pair is illustrated on Fig. 3.
It is only natural that the larger is the generation radius the less is
the time when perceptible changes in Xin do appear. An important
observation is that starting from s = 100 all curves merge and exhi-
bit an asymptotic behavior Xin / t�1:5 predicted by theory [3].

It is instructive to give this problem an analytical consideration
based on the quasi-stationary approximation. It is easy to check
that a steady-state solution to Eq. (4) is

xðnÞ ¼ A expð1=nÞ: ð9Þ

Fig. 1. Time dependence of the positive charge in the Onsager sphere. Parameter na
is equal to 0.2 (1), 0.1 (2) and 0.05 (3). Also, na = n0.

Fig. 2. Time dependence of the positive charge still remaining within integration
sphere whose radius (in units of rc) progressively increases: 1 (1), 2 (2) and 3 (3).
Parameter na is equal to 0.1. Also, na = n0.
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