Chemical Physics 460 (2015) 117-124

journal homepage: www.elsevier.com/locate/chemphys

Contents lists available at ScienceDirect = CHENSES

Chemical Physics

Accurate and efficient evaluation of transition probabilities at unavoided @ CroseMark
crossings in ab initio multiple spawning

Garrett A. Meek, Benjamin G. Levine *

Department of Chemistry, Michigan State University, East Lansing, MI 48824, United States

ARTICLE INFO

ABSTRACT

Article history:
Available online 22 June 2015

Keywords:

Time-derivative coupling
Nonadiabatic coupling matrix element
Nonadiabatic molecular dynamics

Ab initio multiple spawning

Conical intersection

Trivial unavoided crossing

Recently we introduced a norm-preserving wavefunction interpolation (NPI) method which allows the
accurate and efficient integration of the time-dependent Schrodinger equation in regions of rapidly vary-
ing time-derivative coupling (TDC), e.g. near conical intersections (CIs) and effectively (N-1)-dimensional
trivial unavoided crossings (TUCs). Herein we report the implementation of the NPI scheme into the
ab initio multiple spawning (AIMS) method and investigate its behavior in two test systems: one which
exhibits a CI and another which exhibits a TUC. In the CI case, AIMS-NPI predicts transfer probabilities
that agree to within 0.6% of simulations based on the analytical evaluation of the nonadiabatic couplings,
without the need for computationally expensive adaptive integration. In the TUC case, AIMS-NPI results
in less than 0.08% error in the population transfer probability when a 0.12 fs time step is used, while

simulations based on the analytical approach exhibit catastrophic errors for all finite time steps.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) simulations with electronic state
transitions provide valuable insights into the behavior of photoex-
cited molecules and materials, including ultrafast processes such
as non-radiative decay. Leading approaches include classical-
trajectory [1-22] methods, an example of which is Tully’s fewest
switches surface-hopping, and fully quantum mechanical [23-32]
schemes, including wavepacket-based approaches such as ab initio
multiple spawning (AIMS). Each of these approaches involves inte-
gration of the time-dependent Schrédinger equation (TDSE) with a
Hamiltonian that includes non-Born-Oppenheimer terms. Ab initio
(Al) MD methodologies, which solve for the electronic structure of
the system on-the-fly, can be particularly useful in describing such
photochemical processes because they do not require assumptions
about the potential energy surface (PES) or the character of the
electronic states involved, but computational expense limits the
system sizes, time scales, and accuracies accessible via such
simulations.

The TDSE is most often solved by numerical integration, which
requires the discretization of time into finite steps. For the sake of
numerical accuracy, it is necessary that the chosen time step is
shorter than the timescale on which the Hamiltonian matrix
elements vary. However, at each time step computationally
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expensive electronic structure calculations are performed, and
thus efficiency demands the choice of the longest time step possi-
ble. When working in the adiabatic representation, this dilemma
can become intractable because the time-derivative coupling
(TDC) between two electronic states may vary arbitrarily rapidly.
The TDC is defined as

Oy = (Pk (r;1))|0¢ (x ) /Ot) (1)

where J and K are electronic state indices. In modern AIMD simula-
tions the TDC is often computed from the nonadiabatic coupling
matrix element (NACME) vector,

dig(R) = (¢ (r; R)|Vr ey (r; R)) @)

and the nuclear velocity via the chain rule. NACMEs can now be effi-
ciently calculated at many quantum chemical levels of theory using
analytical gradient techniques [33-41].

The TDC exhibits infinitesimally narrow spikes of infinite mag-
nitude at conical intersections (Cls), points of degeneracy between
PESs known to facilitate non-radiative decay [42-46], and thus
simple numerical integration of the TDSE through a CI requires
an infinitesimal time step, which is obviously computationally
intractable. In practice, however, CIs are (N-2)-dimensional fea-
tures of the PES (where N is the total number of nuclear degrees
of freedom), so the probability of a particular trajectory hitting
one directly (Fig. 1, arrow 1) is exceedingly low. Most trajectories
will instead pass around the intersection, leading to a more slowly
varying TDC (Fig. 1, arrow 2). More troublesome are trivial
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Fig. 1. Illustrations of potential energy surfaces near (A) a CI and (B) a TUC. The
three green arrows illustrate possible nuclear motion near each crossing: (1)
diabatic passage through a CI, (2) adiabatic passage around a CI, and (3) diabatic
passage through a TUC. The red arrow (4) illustrates unphysical adiabatic passage
through a TUC, which could manifest itself as e.g. unphysical long range charge
transfer in a real simulation. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

unavoided crossings (TUCs), effectively (N-1)-dimensional inter-
sections which arise in the adiabatic representation when the cou-
pling between two diabatic electronic states is negligible (e.g.
when modeling long range charge or energy transfer or intersys-
tem crossing in the limit of weak spin-orbit coupling). In such
cases, direct passage of a trajectory through the intersection seam
(Fig. 1, arrow 3) is unavoidable, and adiabatic motion through the
intersection (Fig. 1, arrow 4) is impossible. Passage through the
TUC necessarily involves an infinitesimally narrow spike in the
TDC, which a simulation based on finite time steps is unable to
resolve, leading to inaccurate predictions of the probabilities of
electronic state transitions.

Several strategies can be proposed to circumvent numerical
issues associated with the integration of the TDSE through regions
where the TDC spikes sharply. Working in the diabatic representa-
tion eliminates the spike entirely, but the integration of the
relatively small, temporally delocalized coupling between diabatic
states can also lead to inaccurate prediction of transition probabil-
ities [9,47]. In the case of Cls, adaptive time step integration
effectively circumvents numerical problems in all but the worst
cases, but at a significant computational cost [48,49]. In the context
of trajectory surface hopping simulations, formulations for the
hopping probability have been proposed which accurately predict
transition probabilities resulting from sharply spiked TDCs
[12,50-53]. However, formulations for the hopping probability
are not directly applicable in fully quantum mechanical simulation
methods such as AIMS.

An alternative to the above approaches is to eschew the analyt-
ical calculation of the NACME at a finite number of time steps alto-
gether. Approaches in which the TDC is computed directly from the
overlaps of the adiabatic wavefunctions at the beginning of each
time step with those at the end of each step have long been used
when analytical NACME calculations are not available [4,54,55].
An often overlooked advantage of these overlap-based approaches
is that they guarantee that the full change in the adiabatic wave-
function over each time step is resolved, even if the instantaneous
TDC is varying on timescales much shorter than this step. We have
recently developed an overlap-based approach derived from a con-
tinuous interpolation of the adiabatic electronic wavefunction over
the time step, the norm-preserving interpolation (NPI) scheme
[55]. NPI has been demonstrated to predict very accurate state
transition probabilities when employed in the numerical integra-
tion of a simple (adiabatized Landau-Zener [56,57]) model of a
very narrowly avoided crossing. NPI provides an explicit approxi-
mation to the TDC, and can therefore be applied in either trajec-
tory- or wavepacket-based simulations of nonadiabatic dynamics.

In the present work we report the implementation of the NPI
scheme into the AIMS nonadiabatic molecular dynamics method
and assess its performance by application to two different chemi-
cal systems: propylene, which exhibits a CI, and a long range
charge transfer couple, which exhibits a TUC. In the next section,
we present a brief introduction to the NPI scheme, discuss its
implementation in the AIMS method, and detail the two cases
we will use to test the combined AIMS-NPI method. In Section 3
we present analysis of the population transfer probabilities com-
puted using the analytical and NPI schemes in these cases and dis-
cuss the primary sources of error in transition probabilities
computed using AIMS-NPI. Finally, in Section 4, we draw conclu-
sions and discuss future prospects.

2. Methods
2.1. Approximation of the TDC

The NPI scheme approximates the time-derivative coupling at
the middle of a time step (time ty + At/2) from the adiabatic elec-
tronic wavefunctions computed at the beginning and end of that
step (times ty and ty + At, respectively). Specifically, NPI is based
on an interpolated wavefunction which is defined continuously
as a function of time. At any arbitrary time, 7, within a particular
time step, the interpolated electronic wavefunction associated
with adiabatic state J, is computed by application of a transforma-
tion matrix, U(7), to the adiabatic wavefunction at tg

|¢;(1)) = U(7)] ¢ty (o)) 3)

where the diagonal and off-diagonal elements of U(z) are defined,
respectively,

Uy (1) = cos (W (T— t0)> (4)
. 1

Uy (1) = sin (W“ - to>> (5)

and

Ui (to + At) = <¢j(t0)‘¢1<(t0 + At)). (6)

Thus Eq. (3) describes a linear rotation of the adiabatic states
between their known values at times ty and t, + At. In the present
work, these overlaps are computed from adiabatic electronic wave-
functions determined at the complete active space self-consistent
field (CASSCF) level of theory [58]. The orbitals at to + At are rotated
to maximize overlap (diabatized) with those at to, and then Uy
(to + At) is approximated as the dot product of the configuration
interaction vector of state J at time t, with that of state K at time
to + At. A similar approach was used in the calculation of TDCs in
the context of early AIMD simulations conducted at the complete
active space second order perturbation level of theory [59].

The TDC between state J and state K at time T may then be com-
puted according to

<</)1<(T) ‘a¢j(f)/87> = (¢k(to) \UT (1) %U(T) | ¢j(to)>- (7)

We approximate the TDC at the center of the time step, to + At/2
as the average of Eq. (7) over the interval to < T < to + At

o ~ttn+Atd t UT %U ¢
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Evaluation of the right hand side of Eq. (8) results in a set of rel-
atively simple analytical expressions which require only the over-
laps, Uy (to + At), between all pairs of adiabatic states as input. For

to+At/2
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