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a b s t r a c t

The vibronic coupling Hamiltonian is a standard model used to describe the potential energy surfaces of
systems in which non-adiabatic coupling is a key feature. This includes Jahn–Teller and Renner–Teller
systems. The model approximates diabatic potential energy functions as polynomials expanded about
a point of high symmetry. One must ensure the model Hamiltonian belongs to the totally symmetric irre-
ducible representation of this point group. Here, a simple approach is presented to generate functions
that form a basis for totally symmetric irreducible representations of non-Abelian groups and apply it
to D1h (2D) and O (3D). For the O group, the use of a well known basis-generating operator is also
required. The functions generated for D1h are then used to construct a ten state, four coordinate model
of acetylene. The calculated absorption spectrum is compared to the experimental spectrum to serve as a
validation of the approach.
Crown Copyright � 2015 Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

For decades, vibronic coupling models [1–4] have served as
bridges connecting nuclear dynamics studies with the static stud-
ies of electronic structure calculations [5]. The vibronic coupling
model is a simple polynomial expansion of diabatic potential
energy surfaces and couplings. The expansion coefficients are cho-
sen so that the eigenvalues of the potential operator map on to the
adiabatic potential surfaces. This diabatisation by ansatz circum-
vents many of the problems of describing non-adiabatic systems.
It is also the inspiration for a diabatisation scheme that is used in
modern, direct-dynamic methods that include non-adiabatic
effects [6]. For a model Hamiltonian to correctly approximate the
eigenvectors of the true Hamiltonian it has to span the totally sym-
metric irreducible representation (IrRep) of the point groups the
molecule belongs to, at the appropriate symmetric geometries
[7]. In recent times, many articles have demonstrated the advan-
tages of using symmetry when constructing analytic model poten-
tials [8–12], most often in the context of permutation-inversion
groups [13].

Vibronic coupling Hamiltonians predominantly use a Taylor
expansion of the nuclear coordinates that suitably represent the
(quasi)-diabatic electronic potential operator elements around
the point of high symmetry. Quasi-diabatic states conserve the

property of having slowly varying potential energy [14], thereby
requiring few, low-order polynomial terms to converge its Taylor
series in some pertinent region of interest.

Generally, electronic excited states at point-symmetric nuclear
configurations will form a bases for an IrRep of the point group the
molecule belongs to. By choosing coordinates that also form a basis
for IrReps, symmetry allows us to determine whether a given
monomial term is allowed in some element or whether monomials
across different elements share coefficients. A textbook example
are the linear terms in the E� e Jahn–Teller diabatic model
describing E degenerate states with a branching space along e
degenerate modes. The symmetry of this system dictates that the
linear coupling and gradient should share the same coefficient, cor-
rectly resulting in the well-known ‘‘mexican hat” adiabatic poten-
tial. When constructing such models, one must always ensure such
relationships are maintained, since these ensure the symmetry of
the system is kept. It is therefore most convenient to work with
a symmetry-adapted basis of matrices which obey the desired
symmetry considerations. This is especially relevant in the case
of non-Abelian groups, since it is there we find situations like the
one just described.

In this paper, we present approaches for generating such dia-
batic matrices that form bases for totally symmetric IrReps, start-
ing from functions representing electronic states and nuclear
coordinates which transform as known IrReps of the group for
which the matrix representations for the operations are known.
We generate matrices for the O and D1h point groups and provide
all the polynomial expansions representing nuclear coordinates
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(up to fourth and sixth order respectively) and states for many of
the IrReps of each group.

Molecules that belong to either of these groups will exhibit
Jahn–Teller and Renner–Teller effects respectively and are archety-
pal examples of the breakdown of the Born–Oppenheimer approx-
imation. The Jahn–Teller (JT) effect occurs when a molecule in a
high-symmetry configuration has degenerate electronic states.
Vibronic coupling between these states along degenerate nuclear
coordinates form a conical intersection at the high symmetry
point, stabilising the system away from it and thus lowering the
symmetry of the system. The Renner–Teller (RT) effect is a special
case that happens in linear molecules. Due to symmetry consider-
ations a glancing intersection rather than a conical intersection is
formed [4].

Cederbaum et al. were the first to study the form of vibronic
Hamiltonian of linear systems for interacting degenerate and
non-degenerate electronic states to different orders and their
effects on resulting spectra [1,15]. To generate the D1h Hamilto-
nian, we followed a similar approach to Viel and Eisfeld [16],
who generated matrices up to sixth order for E� e Jahn–Teller
Hamiltonians. They used them to fit to the 2E0 anharmonic surfaces
along twofold e0 stretches of NO3 obtained from ab initio MR-SDCI
calculations. They compared results of several diabatic potential
models, one of which includes extra ad hoc functions that do not
obey the C3 requirements. They warn over the use of such ad hoc
functions, showing they can result in wavefunctions with different
expectation values, population transfer and autocorrelation values
to those models obeying the C3 requirements. That work was fol-
lowed by the generation of bases properly describing pseudo
Jahn–Teller (pJT) coupling between E degenerate states to nonde-
generate A states [11]. They tested them on the pJT coupling
between the ground state 2A00

2 and exited 2E0 states along the two-
fold e bending mode surfaces of cation NH3

+ obtained from ab initio
MRCI calculations. A large decrease in fitting error was obtained as
higher order terms were included.

For the O group, although the form of the 3D Jahn–Teller Hamil-
tonian had been known since the first half of last century [17] and
later for all IrReps of the group [18], it has been only recently that
Opalka and Domcke used invariance theory to generate higher-
order expansions as bases for the E and T2 IrReps [12,19]. Here
we used a basis generating operator, devised by Wigner, Lowdin
and Shapiro, amongst others [20] to generate Hamiltonians for
degenerate states and coordinates of A1; E and T1 symmetry. This
is a well known method for generating symmetry-adapted func-
tions and only briefly presented here.

1.1. Basis generating operator

A given function from a set of nv orthonormal basis functions
f v1 ; f

v
2 , f

v
3 ; . . . ; f

v
nv spanning the space of IrRep v in a group with k

classes, under a given transformation operation OR corresponding
to the symmetry operator R of the group, must satisfy:

ORf
v
q ¼

Xnv
p¼1

Dv
pqðRÞf vp q ¼ 1;2; . . .nv ; v ¼ 1;2; . . . k ð1Þ

where Dv
pqðRÞ is the matrix representation of the transformation

operation operator OR on IrRep v. Operating further on the above
expression by the sum of all operations OR of some arbitrary IrRep
l of the group

P
RD

l
ij ðRÞ we get:

X
R

Dl
ij ðRÞ � ORf

v
q ¼

Xnv
p¼1

X
R

Dl
ij ðRÞ � Dv

pqðRÞf vp

¼ ðg=nlÞdvldjqf vi ð2Þ

owing to the great orthogonality theorem:X
R

Dl
ij ðRÞDv

pqðRÞ� ¼ ðg=nlÞdvldipdjq ð3Þ

where g is the order of the group. In other words, operating withP
RD

l
ij ðRÞ � OR on a basis function f vq will generate another basis func-

tion f vi of the same IrRep or else annihilate the function (if v – l).
A second operator can be constructed by choosing i ¼ j and

summing over j:

Xnl
i

X
R

Dl
ii ðRÞ � OR ¼

X
R

vlðRÞ � OR ¼ Pl ð4Þ

This operator Pl has the property of annihilating any function
that does not belong to the lth IrRep space, or else project out
any function which does. With both these operators it is therefore
possible, starting with an arbitrary function within the lth space
(called a generator of expansion), to generate the complete set of
orthonormal functions belonging to this IrRep. To generate the
totally symmetric IrReps of the group, it is therefore only necessary
to utilise the latter operator.

To generate all polynomials described here we used the open-
source mathematics software SAGE [21].

2. Generating symmetry-adapted basis

2.1. D1h Renner–Teller symmetry-adapted basis

There are an infinite number of possible gerade/ungerade En

IrReps indexed by n where a ¼ p
n ;a being the angle of the Ca rota-

tion required to interchange any two real basis functions forming a
twofold degenerate representation of this group.

The dominant contribution of the first few singlet excited states
of organic molecules tend to be from functions with low orbital
angular momentum. For linear organic molecules we therefore
expect that the low singlet states, being formed from p and r func-
tions built of l ¼ 2p functions would result in electronic states
forming a basis for low n representations. Similarly, it is rare to find
a full orthonormal set of coordinates with high n index number for
small molecules (for example, normal coordinates do not exceedP
symmetry [7]).

Given these considerations, we will restrict the construction of
symmetry-adapted bases of matrices by solely using functions that
form a basis for Rþ=�;Pu=g and Du=g IrReps (An and En for n ¼ 1;2) to
represent diabatic states and only Pu=g functions to represent
nuclear coordinates.

The resulting matrices were used to construct a 10-state 4-
dimensional diabatic model in the subspace of Pu=g coordinates
exhibiting Renner–Teller coupling. Theoretical absorption spectra
were calculated which compare well to experimental one, validat-
ing the use of the bases generated (Section 3).

Herzig and Altmann have published the most comprehensive
book of point group tables to date [22]. One can use spherical har-
monic functions as a basis to form a representation of any point
group. They provide the matrix representations of the Pg=u and
Du=g IrReps for all the operations of the group, in the complex sym-
metrised spherical harmonic basis:

Pu :¼ ðPþ
u ;P

�
u Þ ¼ hY1

1;Y
�1
1 j

Pg :¼ ðPþ
g ;P

�
g Þ ¼ hY1

2;�Y�1
2 j

Dg :¼ ðDþ
g ;D

�
g Þ ¼ hY2

2;Y
�2
2 j

Du :¼ ðDþ
u ;D

�
u Þ ¼ hY2

3;�Y�2
3 j

ð5Þ

where Ym
l are the ortho-normalised spherical harmonics using the

Condon–Shortley phase convention [22] (the D1h tables can be
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