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a b s t r a c t

We consider a classical particle bilinearly coupled to a harmonic bath. Assuming that the evolution of the
particle is monitored on a timescale which is longer than the characteristic bath correlation time, we
derive a Markovian master equation for the probability density of the particle. The master equation is
fully specified by the time correlation function of the momenta of the particle. We find the functional
form of the momentum correlation function which yields the Keilson–Storer master equation (Keilson
and Storer, 1952). We show that the parameters of this master equation can directly be related to the
characteristic memory time of the bath.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

As Richard Feynman aphoristically wrote [1], the Boltzmann
equilibrium distribution ‘‘is the summit of statistical mechanics,
and the entire subject is either the slide-down from the summit,
as the principle is applied to various cases, or the climb-up to
where the fundamental law is derived and the concept of thermal
equilibrium and temperature T clarified”.

In the present work, we embark on this climb by deriving the
master equation for the simplest case, a free classical point particle
of mass m with position x and momentum p in a dissipative envi-
ronment. We postulate that the time evolution of the probability
density function qðp; tÞ ¼ R dxqðx; p; tÞ is described by the master
equation

@tqðp; tÞ ¼ �mqðp; tÞ þ m
Z

dp0Tðpjp0Þqðp0; tÞ: ð1Þ

Here m is a relaxation rate and Tðpjp0Þ is the relaxation kernel, which
is normalized and obeys detailed balance. Different functional
forms of the kernel Tðpjp0Þ specify different relaxation mechanisms
[2]. The two most common choices are the strong collision model
corresponding to Tðpjp0Þ ¼ qTðpÞ (qTðpÞ being the Boltzmann
equilibrium distribution) and the Fokker–Planck equation, which
is obtained by an expansion of qðp0; tÞ in the master equation (1)
into a Taylor series around p0 ¼ p and truncating the so-obtained
Kramers–Moyal expansion at second order [3].

A widely used and versatile choice is the Keilson–Storer (KS)
kernel [4]

TKSðpjp0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBTð1� c2Þ

p exp � ðp� cp0Þ2
2mkBTð1� c2Þ

 !
: ð2Þ

Here kB is the Boltzmann constant, T is the temperature of the
environment, and the parameter �1 6 c 6 1 determines various
relaxation mechanisms. The Fokker–Planck equation is recovered
in the limit c ! 1; m ! 1 and mð1� cÞ ! n ¼ const. The strong
collision model is recovered if c ¼ 0. If 0 6 c 6 1, the KS kernel
describes the relaxation mechanisms which are intermediate
between the strong collision model and the Fokker–Planck
equation. Negative c corresponds to a preferential reversal of the
momentum upon ‘‘collision”, and the master equation with
c ¼ �1 describes the so-called dichotomous or telegraph processes.

The KS model found a variety of applications. It was used, for
example, to describe the effect of collisions on lineshapes [5], to
elucidate non-Markovian [6] and non-Gaussian [7] effects in
relaxation processes, to calculate transport coefficients [8], to
study rotational relaxation [9–12], rotation-translational relax-
ation [13], and activated processes in condensed phases [14–16].
Multidimensional generalizations of the KS kernel have also been
suggested [17,18].

According to Feynman, the ‘‘climbing up the summit” is not
completed by writing down a master equation with a certain
kernel. Indeed, the KS kernel (2) is merely postulated, but has
not been derived. Of course, one can evaluate the rate m and the
relaxation parameter c by considering binary collisions of rigid
bodies [19–22]. For example, the KS kernel can be obtained from
the venerable Rayleigh piston model [23]. Yet, this requires addi-
tional approximations. That is why the authors of Ref. [8] have
remarked that the KS kernel is not a physically correct kernel since
it cannot be derived from a Boltzmann-like equation. On the other
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hand, the applicability of the KS master equation is by no means
restricted to dilute gases. It can be used to describe, for example,
reorientation of molecules in liquid water [24], which cannot be
viewed as a sequence of binary collision events. The question is
whether the KS master equation has a microscopic underpinning
and whether it can be derived within the general system-bath
approach of statistical mechanics [25–27].

The aim of the present work is to show that the KS master equa-
tion can be derived analytically in the case of a classical particle
bilinearly coupled to a harmonic bath. We speak of the point par-
ticle for the sake of definiteness only. The results remain true for
the description of rotational motion, if the mass m and momentum
p are replaced by the moment of inertia and the angular momen-
tum, respectively.

2. Nakajima–Zwanzig master equation

2.1. General expressions

Let us consider a free classical particle bilinearly coupled to a
classical harmonic bath. The total Hamiltonian H can be parti-
tioned into the system (S) Hamiltonian, the bath (B) Hamiltonian,
and their coupling,

H ¼ HS þ HB þ HSB; ð3Þ
where

HS ¼ p2

2m
: ð4Þ

The bath is an ensemble of classical harmonic oscillators, and the
system-bath coupling is bilinear:

HSB þ HB ¼ 1
2

X
i

p2
i

mi
þmix2

i xi � ci
mix2

i

x
� �2

 !
: ð5Þ

Here x is the position of the system particle, xi;pi;mi, and xi are the
positions, momenta, masses, and frequencies of the bath oscillators,
and ci are the system-bath coupling coefficients. The influence of
the bath on the system dynamics is fully determined by the bath
correlation function [26,27]

gðtÞ ¼ 1
m

X
i

c2i
mix2

i

cosfxitg: ð6Þ

The harmonic bath with bilinear system-bath coupling is a standard
model in statistical mechanics. It is equivalent to the description in
terms of the generalized Langevin equations [26,27]. The
Hamiltonian (5) can be derived from the general many-body
Hamiltonian by an instantaneous normal mode analysis [28,29].

The Liouville equation for the total (system-plus-bath)
probability density function qtotðtÞ reads
@tqtotðtÞ ¼ �iLqtotðtÞ; ð7Þ
where the total Liouvillian is defined as

iL � p
m

@x þ F@p þ
X
i

pi

mi
@xi � F i@pi

� �
: ð8Þ

Here F defined as

F ¼
X
i

ciF i; F i ¼ xi � ci
mix2

i

x
� �

ð9Þ

is the total force exerted on the system by the bath oscillators.
The initial condition to Liouville equation (7) is chosen as

qtotð0Þ ¼ q0qeq: ð10Þ
Here q0 is an arbitrary distribution in the system momentum space
and

qeq ¼ Z�1
eq exp �HSB þ HB

kBT

� �
ð11Þ

is the equilibrium distribution of the bath in the presence of the sys-
tem, Zeq being its partition function.

Note that qeq of Eq. (11) depends on x through the system-bath
coupling and accounts for initial system-bath correlations. We pre-
fer to work with this correlated initial distribution due to the fol-
lowing two reasons. First, it is more physical than the
(commonly used) uncorrelated initial system-bath distribution
q0qeqðx ¼ 0Þ. A general discussion of the importance of system-
bath correlations can be found in Refs. [30–32]. Second, the corre-
lated initial distribution (10) and (11) guarantees that the stochas-
tic force f ðtÞ generated by the Hamiltonian (3) in the generalized
Langevin equation (see Section A.3 in Appendix) possesses zero
mean, f ðtÞh i ¼ 0. See chapter 3 of the monograph [27] and Ref.
[33] for a discussion of these issues.

We introduce the projection operator [30,31]

P � qeq

Z
dpdx ð12Þ

(p and x denote collectively the momenta and positions of the bath
oscillators) which projects the total system-plus-bath probability
density function onto the correlated initial system-bath distribution
(11). P involves the system coordinate x and differs from the
‘‘purely bath” projection operator PB ¼ Pjx¼0 frequently used in
the literature.

The application of the Nakajima–Zwanzig formalism [26,27,30]
to Eq. (7) yields a formally exact non-Markovian master equation
for the probability density function of the particle,

@tqðp; tÞ ¼
Z t

0
dt0Rpðt � t0Þqðp; t0Þ: ð13Þ

The relaxation operator in Eq. (13) can be written as a generalized
Fokker–Planck operator [30],

RpðtÞ ¼ @pGðtÞ @p þ p
mkBT

� �
: ð14Þ

Here

GðtÞ ¼
Z

dpdxFe�ið1�PÞLtFqeq ð15Þ

is the force–force correlation operator. It follows from Eq. (14) that
the relaxation operator is normalizedZ

dpRpðtÞ ¼ 0 ð16Þ

and obeys detailed balance

RpðtÞqT ¼ 0; ð17Þ
which guarantees that qðp; tÞ attains (at t ! 1) the Boltzmann
equilibrium distribution

qTðpÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pmkBT
p exp � p2

2mkBT

� �
: ð18Þ

2.2. Markovian limit

Let us assume that the characteristic relaxation time sB of the
bath correlation function (6) is short on the timescale sS of the sys-
tem dynamics. If we are interested in the evolution of the particle
for t � sB, we can extend the time integration in Eq. (13) to infinity
and expand the probability density in a Taylor series,

qðp; t0Þ ¼ qðp; tÞ þ @tqðp; tÞðt0 � tÞ þ . . . ; ð19Þ
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