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a b s t r a c t

We propose an analytical method for understanding the problem of long range electron transfer reaction
in solution, modeled by a particle undergoing diffusive motion under the influence of large number of
potentials which are involved (donor – long bridge – acceptor) in the process. The coupling between
these potentials are assumed to be represented by Dirac delta functions. The diffusive motion in this
paper is represented by the Smoluchowski equation. Our solution requires the knowledge of the
Laplace transform of the Green’s function for the motion in all the uncoupled potentials. For the case
where all potentials are parabolic, we have derived a very simple expression for the Green’s function
of the whole process under the semi-infinite limit.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Understanding of electron transfer processes in condensed
phase is very important in chemistry, physics, and biological
sciences, for the experimentalists as well as theoreticians
[1–20]. A large amount of research in this area has been dedi-
cated in the understanding of the behavior of electron transfer
reactions exhibited by donor–acceptor pairs in solutions. Long
range electron transfer in condensed phase may occur over long
distances (up to several tens of angstroms), plays a key role in
many physical, chemical and biological processes [21]. Since the
pioneering work of Zusman [22] there are a large number of
studies devoted to solvent effects on outer sphere ET reactions
with backward reactions however a complete picture is given by
Nadler and Marcus [23] to include the effect of diffusion and reac-
tion in both directions which is also considered by Ghosh and
coworkers. There are a large number of citations in the literature
in the area of electron transfer reactions, like Ghosh and coworkers
[24] derived an exact analytical expression averaged forward of a
reversible electron transfer reaction. In this work a reaction coordi-
nate is undergoing diffusive motion in arbitrary potential wells of
reactant and the product. Localized sink has arbitrary position and
strength. The model given by them can explain the non-Marcus
free energy gap dependence of the rate of electron transfer reac-
tions. Similarly, an exact solution of the Smoluchowski equation
for a Brownian particle moving in an arbitrary potential well with
a sink are also provided by same authors [25] in which they

considered the case of diffusion in a harmonic potential well. In
the following we propose a simple analytical method for under-
standing the problem of long range electron transfer reaction in
solution, modeled by a particle undergoing diffusive motion under
the influence of many (donor – bridge – acceptor) potentials
explicitly. A molecule (donor – bridge – acceptor) immersed in a
polar solvent can be put on an electronically excited potential
(represents the free energy of the donor surface) by the absorption
of radiation. The molecule executes a walk on that potential, which
may be taken to be random as it is immersed in the polar solvent.
As the molecule moves it may undergo non-radiative decay from
certain regions of that potential to another potential (represents
the free energy of one, among many which constitutes bridge
potentials). So the problem is to calculate the probability that the
molecule will still be on the electronically excited donor potential
after a finite time t.

2. Our model

We denote the probability that the molecule would survive on
the donor potential by Pdðx; tÞ. We also use Paðx; tÞ to denote the
probability that the molecule would be found in the acceptor
potential and Piðx; tÞ to denote the probability that the molecule
would be found on the ith bridge potential. It is very usual to
assume the motion on all the potentials to be one dimensional
and diffusive, the relevant coordinate being denoted by x. It is also
common to assume that the motion on all the potential energy
surface is over damped. Thus all the probability Pdðx; tÞ; Piðx; tÞ
and Paðx; tÞ may be found at x at the time t obeys a modified
Smoluchowski equation.
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ViðxÞ is the potential causing the drift of the particle, SðxÞ is a posi-
tion dependent sink function, kr is the rate of radiative decay and k0

is the rate of electron transfer. We have taken kr to be independent
of position. D is the diffusion coefficient. Before we excite, the
molecule is in the ground state, and as the solvent is at a finite
temperature, its distribution over the coordinate x is random.
From this it undergoes Franck–Condon excitation to the excited
state potential (donor). So, x0 the initial position of the particle,
on the excited state potential is random. We assume it to be given
by the probability density P0

1ðx0Þ.

3. Analytical solution

In the following we provide a general procedure for finding the
exact analytical solution of Eq. (1). The Laplace transform
Piðx; sÞ ¼

R1
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as k(r) is a constant, so the solution of above equation can be writ-
ten as [26]

s� Lþ kr þ k0SðxÞ½ �Gðs; sjx0Þ ¼ dðx� x0Þ ð4Þ

where
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with

G0ðx;sjx0Þ¼G0ðx;sjx0Þ�k0G0ðx;sjx0ÞG0ðxs;sjx0Þ½1þk0G0ðxs;sjx0Þ��1
: ð5Þ

In the above Eq. P0
dðx0Þ ¼ Pdðx;0Þ is the initial distribution at the

electronically excited state (donor potential), Piðx;0Þ ¼ 0 and
Paðx;0Þ ¼ 0 is the initial distribution at the acceptor potential, hence
in matrix notation we can write it as
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The solution of the above equation can be written as

Pd!aðx; sÞ ¼
Z 1

�1
dx0G0

d!aðx; s; x0ÞP0
dðx0Þ; ð7Þ

where Gd!aðx; s; x0Þ is the corresponding Green’s function. In the fol-
lowing we will derive an analytical expression for the Greens func-
tion for this long range electron transfer process. We start with the
simplest version of the problem i.e., we are dealing with the case
which involved only two potentials, as given below
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Using the partition technique [27], solution of this equation can be
written as

Pd!1ðx; sÞ ¼
Z 1
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where Gðx; s; x0Þ is the Green’s function defined by the following
equation

G0
d!1ðx; s; x0Þ ¼ x ½s� Ld þ kr þ k0SðxÞ þ k2
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The above equation is true for any general sink S. But this expres-
sions simplify considerably if S is a Dirac delta function located at
x1. In the operator notation S can be written as S ¼ x1ihx1j j. So
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where

G0
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��� ���x0
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and corresponds to propagation of the particle starting from x0 on
the first bridge potential in the absence of any coupling. Now we
use the operator identity
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