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a b s t r a c t

The ground-state energies of one-electron homonuclear quasi-molecules for the nuclear charge number
in the range Z ¼ 1� 100 at the ‘‘chemical’’ distances R ¼ 2=Z (in a.u.) are calculated. The calculations are
performed for both point- and extended-charge nucleus cases using the Dirac–Fock–Sturm approach
with the basis functions constructed from the one-center Dirac–Sturm orbitals. The critical distances
Rcr, at which the ground-state level reaches the edge of the negative-energy Dirac continuum, are calcu-
lated for homonuclear quasi-molecules in the range: 85 6 Z 6 100. It is found that in case of U183þ

2 the
critical distance Rcr ¼ 38:42 fm for the point-charge nuclei and Rcr ¼ 34:72 fm for extended nuclei.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

A one-electron diatomic quasi-molecule represents the simplest
molecular system. Precise calculations of one-electron homonu-
clear quasi-molecules are generally used for tests of various theo-
retical methods developed for calculations of diatomic systems.
Theoretical analysis of the electronic structure of a one-electron
quasi-molecular system consists in solving the one-electron two-
center Schrödinger or Dirac equation.

In the nonrelativistic case the three-dimensional two-center
Schrödinger equation can be transformed into two ordinary (one-
dimensional) differential equations [1] and, therefore, can be
solved to a high accuracy [2]. Moreover, the scaling r0 ¼ r=Z allows
one to reduce the solution of the Schrödinger equation with the
internuclear distance R and the nuclear charge Z to the solution
of the same equation for the molecular ion Hþ2 with the internu-
clear distance R=Z. This makes the molecular ion Hþ2 to be a good
test system for various theoretical methods. In the relativistic case,
however, the variables can not be completely separated and the
simple scaling is no longer valid. To date, various theoretical
methods were developed to calculate homonuclear quasi-mole-
cules [3–10]. Systematic calculations of the ground-states energies
of molecular ions for a wide range of Z at the distances R ¼ 2=Z
were performed in Ref. [11].

Investigations of quasi-molecules formed during low-energy
heavy-ion collisions with the total nuclear charge larger than the
critical value, Z1 þ Z2 P Zcr � 172, can provide a unique possibility
to study quantum electrodynamics (QED) at supercritical electro-
magnetic fields [12,13]. It is known that the ground-state level
reaches the edge of the negative-energy spectrum, when the inter-
nuclear distance R becomes equal to the critical value Rcr. For the
distances R < Rcr, the ground-state level dives into negative-energy
Dirac continuum as a resonance. The critical distances Rcr were cal-
culated for the point-charge nuclei in Refs. [14–16] and for
extended nuclei in Refs. [17–19]. However, since the first calcula-
tions for extended nuclei were accomplished using either a crude
numerical approach [17] or an approximate analytical method
[18,19], their accuracy was rather low. In case of U183þ

2 , the most
precise calculations of the critical distance were performed in Refs.
[20,21].

In the present work, high-precision relativistic calculations of
the ground-state energies of molecular ions with the nuclear
charges in the range Z ¼ 1� 100 at ‘‘chemical distances’’ R ¼ 2=Z
(in a.u.) are performed. We also calculate the critical distances
> Rcr for one-electron quasi-molecules in the range:
85 6 Z 6 100. All the calculations, being performed for both point-
and extended-charge nuclei, are based on the Dirac–Fock–Sturm
method [22–24,20,25]. The basic equations of this method for the
one-electron two-center problem are given in Section 2. In Section
3, we present the numerical results and compare them with the
calculations performed by other methods.

Atomic units are used throughout the paper (�h ¼ m ¼ e ¼ 1).
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2. Dirac–Sturm method for the two-center problem

In the framework of the Born–Oppenheimer approximation the
electronic wave function wð~rÞ is determined by the Dirac equation:

ĥDwnð~rÞ ¼ en wnð~rÞ; ð1Þ

where en is the energy of the stationary state and ĥD is the two-cen-
ter Dirac Hamiltonian defined by

ĥD ¼ cð~a �~pÞ þ bc2 þ VABð~rÞ: ð2Þ

Here c is the speed of light, ~a;b are the Dirac matrices, VABð~rÞ is the
two-center Coulomb potential,

VABð~rÞ ¼ VA
nuclð~rAÞ þ VB

nuclð~rBÞ; ~rA ¼~r �~RA; ~rB ¼~r �~RB ð3Þ

and ~RA and ~RB determine the positions of the nuclei. The one-center
Coulomb potential:

Vnuclð~rÞ ¼
�Z=r for the point-charge nucleus;

�
R

d~r0 Zqnuclð~r0 Þ
j~r�~r0 j for the extended nucleus;

(
ð4Þ

where the nuclear charge density qnuclð~rÞ is normalized to unity
(
R

d~rqnuclð~rÞ ¼ 1).
The two-center expansion of the stationary wave function wnð~rÞ

is given by

wnð~rÞ ¼
X
a¼A;B

X
a

cn
aa ua;að~r �~RaÞ; ð5Þ

where index a ¼ A;B labels the centers and index a numerates the
basis functions at the given center. The coefficients cn

aa of the expan-
sion (5) can be obtained solving the generalized eigenvalue
problem:X

k

Hjk cn
k ¼ en

X
k

Sjk cn
k ; ð6Þ

where subscripts j and k numerate the basis functions of both cen-
ters, and the matrix elements Hjk and Sjk are given by

Hjk ¼ hjjĥDjki; Sjk ¼ hjjki: ð7Þ

As the basic functions, we consider the central-field bispinors cen-
tered at the positions of the ions:

unjmð~rÞ ¼
PnjðrÞ

r vjmðX;rÞ
i QnjðrÞ

r v�jmðX;rÞ

 !
; ð8Þ

where PnjðrÞ and QnjðrÞ are the large and small radial components,
respectively, and j ¼ ð�1Þlþjþ1=2ðjþ 1=2Þ is the relativistic angular
quantum number. The radial components are numerical solutions
of the radial Dirac–Sturm equations in the central field potential
VðrÞ:

c � d
dr þ j

r

� �
QnjðrÞ þ VðrÞ þ c2 � en0j

� �
PnjðrÞ ¼ knj WjðrÞPnjðrÞ;

c d
dr þ j

r

� �
PnjðrÞ þ VðrÞ � c2 � en0j

� �
Q njðrÞ ¼ knj WjðrÞQ njðrÞ:

ð9Þ

Here knj can be considered as an eigenvalue of the Dirac–Sturm
operator and WjðrÞ is a constant sign weight function. In our calcu-
lations we use the following weight function:

WjðrÞ ¼ �
1� expð�ðaj rÞ2Þ

ðaj rÞ2
: ð10Þ

In contrast to 1=r, this weight function is regular at the origin. The
Sturmian operator is Hermitian and does not contain any contin-
uum spectra. Therefore, the generalized eigenvalue equation with
the weight function (10) yields a complete and discrete set of eigen-
functions that are orthogonal to each other with the weight (10).

Eq. (9) are solved using the finite difference method with a con-
stant step on Brattsev’s grid q ¼ a r þ b lnðrÞ [22]. These solutions,
which have the right asymptotic behavior at the origin and infinity,
are used to construct the basis set. In particular, for the two
Coulomb point-charge centers the behavior of the basic functions
at the origin is characterized by the fractional degree of the radius,

� rc with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 � ðZ=cÞ2

q
.

The central-field potential VðrÞ in Eq. (9) can be chosen to pro-
vide the most appropriate basis. For instance, at small internuclear
distances the potential VðrÞ at the center A, in addition to the Cou-
lomb potential of the nucleus A, VA

nuclðrÞ, should also include the
monopole part of the reexpansion of the potential VB

nuclð~r � ~RBÞ
with respect to the center A:

VAðrÞ ¼ VA
nuclðrÞ þ VB

monðrÞ; ð11Þ

where

VB
monðrÞ ¼

1
4p

Z
dXA VB

nuclð~r � ~RBÞ: ð12Þ

However, for the ‘‘chemical’’ distances (R ¼ 2=Z) taking into account
the monopole potential of the second ion in Eq. (11) does not
improve the convergence of the results with respect to the number
of the basis functions. For this reason, we keep this term evaluating
the critical distances and neglect it in the calculations at the ‘‘chem-
ical’’ distances.

3. Results and discussion

High-precision relativistic calculations of the 1rg state energy
of one-electron homonuclear quasi-molecules at the distance
R ¼ 2=Z (in a.u.) have been performed employing the Dirac–Sturm
method. The results of these calculations for the point- and
extended-charge nuclei are given in Table 1. The extended-nucleus
results were obtained using the Fermi model of the nuclear charge
distribution:

qnuclðrÞ ¼
N

1þ exp½ðr � r0Þ=a� ; ð13Þ

where the parameter a was chosen to be a ¼ 2:3=ð4 ln 3Þ and the
parameters N and r0 are obtained using the values of the root-
mean-square (rms) nuclear charge radii hr2

ni
1=2 taken from Refs.

[26,27]. The point-nucleus results were recently presented in Ref.
[28]. In these calculations we used the speed of light as obtained
from the fine structure constant a ¼ 1=c (the value of a is taken
from CODATA [29]).

Table 1
Relativistic energies (a.u.) of the 1rg quasi-molecular state for the point- and
extended-charge nuclei and R ¼ 2=Z a.u. (speed of light c = 137.035999074 [29]).

Z Ion e1rg (point-charge nucl.) e1rg (extended-charge nucl.)

1 Hþ2 �1.102641581032
2 He3þ

2
�4.410654728260 �4.410654714140

10 Ne19þ
2

�110.3372043998 �110.3371741499

20 Ca39þ
2

�442.2399970985 �442.2392996469

30 Zn59þ
2

�998.4267621737 �998.4214646525

40 Zr79þ
2

�1783.587352661 �1783.563450815

50 Sn99þ
2

�2804.659800901 �2804.571434254

60 Nd119þ
2

�4071.309814908 �4071.036267926

70 Yb139þ
2

�5596.754834761 �5595.926978290

80 Hg159þ
2

�7399.228750561 �7397.028800116

90 Th179þ
2

�9504.756648531 �9498.588788490

92 U183þ
2

�9965.365357898 �9957.775519122

100 Fm199þ
2

�11952.94176701 �11936.41770218
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