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a b s t r a c t

We have compared time-of-flight curves predicted by hopping and multiple trapping models with the
Gaussian and exponential site/trap energy distributions, fitting Monte-Carlo predictions of the former
with numerical calculations of the latter in a wide time domain using logarithmic coordinates lg j–lg t
for the characterization of current shapes and an estimation of transit times. As a prototype hopping the-
ory, we used the Gaussian disorder model while for representing the quasi-band theories we relied on the
multiple trapping model, both of these for two types of the site/trap energy distributions. In case of the
Gaussian distribution of trap depths, fitting procedure requires adjusting of the two model parameters
(an energy distribution parameter r and a frequency factor m0). For an exponential distribution, a one-
parameter (m0) fitting suffices. The dipolar glass model, unlike the Gaussian disorder model, is basically
different from the multiple trapping formalism, but a recently introduced two-layer multiple trapping
model seems capable of reproducing TOF current shapes rather well.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Carrier transport in molecularly doped polymers (MDP) occurs
by field-assisted and thermally-activated hopping in a spatially
and energetically disordered manifold of the transport sites (dop-
ant molecules) randomly dispersed in a polymer binder. Depend-
ing on the electronic properties of these molecules (electron
donors or acceptors), an MDP may be a hole or an electron conduc-
tor respectively. The main characteristic of the charge transport in
MDPs is the carrier mobility experimentally determined by the
time of flight (TOF) technique [1,2]. At present, a universally
accepted point of view is to treat this phenomenon in terms of
the existing hopping theories. Among these three models are most
popular. First is the Gaussian disorder model (GDM) proposed by
Bässler [3,4], the mainstream tool for processing numerous results
on the mobility field and temperature dependence with the aim of
finding the model parameters via the dipolar disorder formalism
developed by Borsenberger and Bässler [5,6]. The second is a
recently emerged dipolar glass model (DGM) [7,8], which seeks
to overcome the basic limitation of the GDM, its inability to
describe consistently the ubiquitous Poole–Frenkel (PF) type of
the mobility field dependence in MDPs [1,2]. There is yet another

approach, also emphasizing, like the DGM, the correlation effects,
but taking into account the polaronic effects as well, which seems
to give a consistent explanation of the field and temperature
dependence observed [9].

All of the above hopping theories require time-and labor con-
suming efforts to perform Monte-Carlo simulations, which greatly
hinders their wide application not only in engineering practice but
also among scientific community. It is due to this reason that their
heuristic counterparts (mainly multiple trapping (MT) model) are
still widely used for the simulation of electro-optical devices
[10–13].

Although only hopping theories give a true microscopic descrip-
tion of the charge carrier transport in MDPs, much simpler argu-
mentation provided by MT models could be justified by the close
analogy between the so-called transport energy in the hopping
models and the mobility edge in the quasi-band approach
[14,15]. Transport energy, defined as the most probable final
energy level of the hopping carrier does not depend on its initial
energy if this is situated deep enough and the density of states
decreases fast with the depth of the state. This concept suggests
that the major exponential contribution to the temperature depen-
dence of the hopping mobility in the steady state could be ade-
quately described by the transport energy serving as an effective
activation energy. Though the above approach was sometimes crit-
icized [16] and is certainly not well suited for description of the
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hopping transport in correlated energy landscape [17], it provides
a useful heuristic link between MT and hopping models.

The first Monte-Carlo simulations of the GDM [18–20] showed
that TOF current shapes closely resemble those predicted by the
MT theories for respective trap distributions. Later publications
[21,22] confirmed these findings. It was even claimed that both
responses might even be identical at low electric fields [23]. In fact,
these papers had only shown that transient shapes for both models
were similar but no attempt had been made to confirm that mobil-
ity field and temperature dependences were identical in a sense
that a relation between microscopic parameters of the equivalent
models could be established. In this paper, we are going to fill this
gap, if only partially.

2. Formulation of the problem

We compare theoretical models using typical set-up of the TOF
experiment in which a sheet of carriers is instantly generated in a
polymer slab near the illuminated electrode. The surface density of
generated charges R0 (cm�2) is much smaller than that residing on
the electrodes (small signal regime), so that an electric field F0

inside the bulk of the polymer is constant and uniform. Due to ran-
dom motion of individual carriers, the carrier sheet continuously
spreads as it drifts to the collecting electrode. An observable quan-
tity in TOF experiment is the current density j(t) in the external cir-
cuit. The main characteristics of computer simulations are current
shapes and transit times, which we compare for different models.
The TOF problem is treated as one-dimensional with the x-axis
running along an applied electric field. Charge transport in MDPs
occurs as a hopping process, so we use the GDM Monte-Carlo sim-
ulation data as a primary source information to be fitted with the
MT numerical calculations.

2.1. Hopping models

We considered hopping models with the Gaussian (the GDM) as
well an exponential (EDM) site energy distributions. Monte-Carlo
simulations of the TOF transients were quite similar to those
described previously [3,4]. Parameters of the hopping models refer
to a typical polar MDP: polycarbonate doped with 30 wt% p-dieth-
ylaminobenzaldehyde diphenylhydrazone (30% DEH:PC) [24,25],
which is a hole-only conductor.

We assume that transport molecules occupy sites of the simple
cubic lattice with the nearest-neighbor distance a = 1.165 nm. The
sample thickness is L ¼ 2� 104 a = 23.3 lm. The transfer rate is
given by the standard Miller–Abrahams expression [4]. The inverse
wave function localization length c is such that 2 ca = 10. The zero-
field mobility l0 for the case of no energetic disorder as given by
the dipolar disorder formalism is taken to be 0.02 cm2/(V s). There
is a well-known relation between this quantity and the frequency
mhh of carrier jumps to the nearest neighbor sites on a cubic lattice
(e is an elementary electric charge and k is the Boltzmann con-
stant) [26]

l0 ¼ ðe=kTÞa2mhh ð1Þ

In our case, mhh = 3.7 � 1010 s�1. In Monte-Carlo simulations, the
quantity m�1

hh = 2.7 � 10�11 s serves as a normalization time. Site
energy distributions are as follows [20]

MðEÞ ¼ a�3ffiffiffiffiffiffiffi
2p
p

r
exp � E2

2r2

 !
ðGDMÞ ð2Þ

MðEÞ ¼ a�3

E0
exp � E

E0

� �
ðEDMÞ ð3Þ

where �1 6 E 61 (Eq. (2)) and 0 6 E 61 (Eq. (3)).

2.2. MT models

Now we would like to briefly discuss the basic physics of this
formulation. It is well known that the MT model, based on the
quasi-band arguments proposed by A. Rose [27], in its present form
is a powerful instrument for describing a plethora of photo- and
radiation-induced conductivity results in disordered solids [28]
as well as for interpretation of the carrier transport in such systems
[29]. Of course, this approach exists only on a phenomenological
level.

It is assumed that in a hole-only conductor, photo excited holes
appear in a mobile state. Their quantum yield depends on the
applied electric field and temperature according to the Onsager
theory (see [30]). Subsequent hole migration (drift and diffusion)
proceeds in the presence of traps whose depths are statistically
distributed in energy. Trapping of the mobile carriers is a first order
non-activated process while thermal detrapping obeys the Boltz-
mann statistics with a frequency factor common to all traps. The
bimolecular recombination is of the Langevin type and takes place
between mobile holes and the immobile electrons (recombination
centers). Direct transitions of holes between traps are forbidden,
their migration being possible exclusively via thermal excitation
into the valence band.

Following A. Rose, we solve numerically the following set of the
coupled differential equations, which are standard for the MT
model:
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Eq. (4) is the rate equation describing the gain and loss of holes
between the trap manifold and the transport manifold. A corre-
sponding equation for the evolution of holes includes the same
gain and loss processes, but also includes drift due to the applied
field. We have introduced the combined trap and free population,
and broken this equation into two parts, as expressed by (5) and
(6).

We assume that a sheet of holes in the conducting states with
the planar density R0 is generated near the front electrode at
x = 0, Pðx; tÞ is the total concentration of carriers, P0ðx; tÞ is the con-
centration of mobile holes in transport manifold with the quasi-
band mobility l0 and the lifetime s0, and the density of holes in
the trap manifold is given by qðx; E; tÞ (here E is the trap energy).
The frequency factor is m0. The distribution of trap energies MðEÞ
is given by a half-Gaussian distribution for positive values of the
argument with rms r for the MTg.
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for the MTe (M0 is the total trap concentration while E0 is the distri-
bution parameter). In both formulas E is positive (note differences
with Eqs. (2) and (3)). In Sections 2.1 and 2.2 we used the same
symbols l0 and r (or E0) as these are meant to be identical. In com-
putations one of the probe values of r is 0.13 eV while E0 = 0.05 eV
is kept constant. Dispersion parameter for both EDM and MTe is
equal to a = kT/E0. Besides, R0 in both MT models is 108 cm�2.
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