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a b s t r a c t

This paper is devoted to the study of the limits of the well-known Gaussian approximation in the self
dynamics of quantum systems. After introducing the basic formalism and shortly reviewing the methods
used in classical systems to apply corrections to the Gaussian approximation, an extension to quantum
fluids is devised, with a particular interest in the so-called semi-quantum fluids, i.e. those in which the
single particle momentum distribution approximately retains its Maxwellian form (but not its classical
width). In this case a detailed correction scheme for both the short- and the long-time behaviors of
the intermediate scattering function is proposed. Subsequently, a practical test of this approach is
performed on a high resolution neutron scattering spectrum derived from liquid parahydrogen at
T ¼ 14:1 K. Extracting the spectral deviations from the Gaussian approximation with the help of an accu-
rate centroid molecular dynamics simulation, we are able to describe them precisely and to derive the
first two correction coefficients in this system by means of a simple fitting procedure. These experimental
findings confirm the validity of our approach and show that a description of the self dynamics beyond the
Gaussian approximation is necessary even in simple liquids affected by mild quantum effects.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the microscopic dynamics of liquid systems
exhibiting moderate quantum effects (i.e. semi-quantum liquids),
such as 4He above the k-transition, 3He warmer than its Fermi tem-
perature, molecular hydrogen, deuterium and tritium, neon, and
their various mixtures, is still one of the open problems in con-
densed matter physics [1]. In general, semi-quantum liquids are
fluid systems in which the actual temperature is lower than their
Debye temperature [2]. However, differently from the highly-
quantum fluids (e.g. superfluid 4He and degenerate liquid 3He),
the corresponding quantum statistics (Bose–Einstein or Fermi–
Dirac) seems to play no significant role in semi-quantum liquids
[2], so that it is sensible to apply the Maxwell–Boltzmann statistics
to describe their properties. Several theoretical approaches to the
semi-quantum liquid dynamics have been tried in the past, but,
despite some interesting results, none of them has come out as
thoroughly satisfactory. On the computational side, centroid molec-
ular dynamics [3] and ring polymer molecular dynamics [4] are
surely among the simulation techniques producing the best results
for semi-quantum liquids, but their scope is limited to evaluate the

time-correlation functions of operators linear in position, ~rðtÞ, or
momentum, ~pðtÞ, only. The Feynman–Kleinert linearized path-inte-
gral does not seem to suffer these limitation [5], but its capability
to precisely reproduce the dynamic structure factors of liquid
hydrogen and deuterium is still matter of discussion [6]. Among
the various promising approaches to the collective and the self
dynamics of semi-quantum liquids, two kinds of methods are
surely worth mentioning: those based on the so-called quantum
generalized Langevin equation [7,8], which extend the mode cou-
pling theory beyond classical systems, and those exploiting the
analytic continuation of the imaginary time correlation functions,
which make use of advanced maximum entropy methods [8,9].
Given this scenario, any precise experimental determination of
dynamic quantities (i.e. time-correlation functions or their fre-
quency spectra) that can be compared to the corresponding theo-
retical predictions becomes highly valuable, like, for instance, a
recent experiment on liquid para-H2 performed by the present
authors [10].

The liquid parahydrogen system has been selected for two rea-
sons: first because of its clear and evident semi-quantum charac-
ter, which has attracted a number of theoretical studies,
simulations and experimental works [10]. Secondly, because of
the peculiar molecular hydrogen properties when H2 is interacting
with thermal neutrons: as explained in detail in the literature
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[11,12], it is possible to single out the self-dynamics of the para-H2

molecular centers-of-mass in a condensed system by means of
inelastic neutron scattering. In other words, the neutron scattering
double-differential cross-section of a collection of para-H2 mole-
cules can be easily related to the self part of the center-of-mass
dynamic structure factor, SsðQ ; EÞ (with Q and E being the wave-
vector and energy transfers, respectively), which is an intrinsic
physical property of the system under investigation related to
the single H2-molecule dynamics. At this stage, it is a common
practice to try to connect SsðQ ; EÞ to the power spectrum of the
velocity auto-correlation function. However, whenever SsðQ ; EÞ is
not available in a wide Q-range so that a low-Q extrapolation
becomes impossible, this connection is attempted through the
well-known Gaussian approximation (GA) [13]. The latter
approach has been proved to be exact in some simple model
systems: an ideal gas, a harmonic solid, and a fluid in which the
particle diffusion is governed by classical hydrodynamics (i.e. the
Fick’s laws). Even though it has been found by some neutron scat-
tering experiments [14] and simulations on classical fluid argon
that there exist areas of the ðQ ; EÞ kinematic plane in which the
Gaussian approximation does not hold precisely, this method is
still widely used, and no complete critical assessment about its
validity has been undertaken, especially in connection with semi-
quantum liquids. In this respect, the mentioned work on pure
liquid para-H2 [10] was able to detect clear experimental evidences
of a GA breakdown four times larger than in liquid Ar, possibly due
to the more quantum nature of the former system. This scenario
has prompted the authors of the present study to clarify some con-
cepts about the applicability of the corrections to the Gaussian
approximation in the case of a semi-quantum liquid, since the
well-known approach set up for classical systems (Section 2) does
not hold exactly for this class of systems. A simple correction
scheme, complying with the main quantum properties, is pre-
sented (Section 3) after being carefully analyzed in its short time
behavior. The rest of the paper will be devoted to a discussion of
the model results in connection with a new analysis of published
neutron scattering data [15] on liquid parahydrogen (Section 4),
and, finally, to the conclusion and the perspective of the present
work (Section 5).

2. The Gaussian approximation and its classical correction
scheme

We have seen that one of the most important approaches to the
self-dynamics problem is based on the so-called Gaussian
approximation, which owes its name to the assumption that the
self-intermediate scattering function [16], IsðQ ; tÞ, coincides with
Is;GAðQ ; tÞ given by:

Is;GAðQ ; tÞ ¼ exp �Q 2wðtÞ
� �

: ð1Þ

It is worth recalling that, in general, IsðQ ; tÞ is just the time Fourier
transform of the aforementioned SsðQ ; EÞ:

SsðQ ; EÞ ¼
1

2p�h

Z 1

�1
exp �iEt�h�1

� �
IsðQ ; tÞdt; ð2Þ

where �h is the Planck constant. Eq. (1) states that in the whole
dynamical range between hydrodynamic diffusion (Q ! 0 and long
times) and free-particle motion (Q !1 and short times) there
exists a function of time only, wðtÞ, that completely determines
the motion of an individual particle. The GA finds its rationale in
the fact that in a fluid Eq. (1) is valid in both the limit conditions
above, so that large deviations from GA should not be reasonably
expected at the nanometer–picosecond length and time scales rele-
vant to molecular motions. In addition, we have already seen that
the aforementioned formula is also exact for an isotropic harmonic

crystal and a highly diluted gas. Rahman et al. [13] have shown that
in an isotropic system one can rigorously write:

IsðQ ; tÞ ¼ exp
X1
n¼1

�Q 2
� �n

cnðtÞ
" #

: ð3Þ

Here:

c1ðtÞ ¼ �
i�ht
2M
þ 1

3

Z t

0
ðt � sÞh~vð0Þ �~vðsÞids; ð4Þ

where h~vð0Þ �~vðtÞi is the velocity auto-correlation function (VACF),
and ~vðtÞ is the velocity of a tagged particle in the fluid. Eq. (4) also
includes the free-recoil effect for particles of mass M. So the GA is
obtained from the simple neglect of all cnðtÞ with n > 1, the self-
dynamics being then derivable from knowledge of wðtÞ ¼ c1ðtÞ
alone, through the use of its power spectrum, f ðxÞ:

c1ðtÞ ¼
�h

2M

Z 1

0

f ðxÞ
x

coth
�hx

2kBT

� �
1� cosðxtÞð Þ � i sinðxtÞ

� �
dx;

ð5Þ

which is defined [13] as:

f ðxÞ ¼ 4M
3p�hx

Z 1

0
Imh~vð0Þ �~vðsÞi sinðxtÞds

¼ 4M
3p�hx

tanh
�hx

2kBT

� �Z 1

0
Reh~vð0Þ �~vðsÞi cosðxtÞds: ð6Þ

However, in the classical case [16], Eqs. (4) and (6) can be simplified
since c1ðtÞ and h~vð0Þ �~vðsÞi turn into real functions, symmetric in t:

c1;clðtÞ¼
kBT
M

Z 1

0

f clðxÞ
x2 1�cosðxtÞð Þdx¼1

3

Z t

0
ðt�sÞh~vð0Þ�~vðsÞiclds;

f clðxÞ¼
2M

3pkBT

Z 1

0
h~vð0Þ�~vðsÞicl cosðxsÞds: ð7Þ

It is also straightforward to prove that c1;clðtÞ can be understood as
one sixth of the mean square displacement of the tagged particle:
c1;clðtÞ ¼ 1

6 hð~rðtÞ �~rð0ÞÞ
2icl. Due to the system isotropy, one can

equivalently write: c1;clðtÞ ¼ 1
2 hðzðtÞ � zð0ÞÞ2icl ¼ 1

2 hDzðtÞ2icl.
In the aforementioned classical framework, a detailed scheme

for including corrections to the GA was set up by Nijboer and
Rahman [17] by introducing appropriate time modulations of
the power series for expð�Q2c1;clðtÞÞ � 1þ Q2c1;clðtÞ. These are
achieved, for example, through a set of an;clðtÞ functions:

Is;clðQ ; tÞ ¼ e�Q2c1;clðtÞ 1þ a2;clðtÞ
ðQ 2c1;clðtÞÞ

2

2!

2
4

�
 
a3;clðtÞ � 3a2;clðtÞ

!
ðQ2c1;clðtÞÞ

3

3!
þ � � �

3
5; ð8Þ

where a2;clðtÞ and a3;clðtÞ are related to the mean powers of the
displacement of the tagged particle [18]:

a2;clðtÞ ¼
hDzðtÞ4icl

3hDzðtÞ2i2cl

� 1;

a3;clðtÞ ¼
hDzðtÞ6icl

15hDzðtÞ2i3cl

� 1: ð9Þ

This approach is largely used in various areas of condensed matter
physics and physical chemistry including, for instance, polymers,
complex liquids, and glasses [19,20]. However, being essentially a
Gram–Charlier A series [21] for the self pair correlation function
Gsðr; tÞ (i.e. the spatial Fourier transform of IsðQ ; tÞ), it is not guaran-
teed to give probability density functions which are always positive
and could exhibit convergence problems unless Gsðr; tÞ decays to
zero faster than a Gaussian distribution for r growing to infinity.
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