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a b s t r a c t

We regard the wave-packet dynamics in two electronic states which interact via a constant coupling
element. Performing numerical calculations it is found that the time-dependent populations exhibit oscil-
latory variations with two characteristic periods. Whereas, as expected, one period is determined by the
vibrational motion, it is shown that Rabi-type oscillations occur which are influenced by the parameters
of the potential energy curves, the coupling and the amplitudes in the two states on one hand, and by the
nuclear motion on the other. An analysis of the numerical results is performed within various levels of
approximation.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The preparation of quantum wave packets and the detection of
their motion in real time is at the heart of Femtochemistry [1].
Femtosecond laser pulses possess a spectral width which allows
to prepare coherent superpositions of ro-vibrational molecular
eigenstates. Because in molecules the density of electronic states
increases with excitation energy, it is usually found that the energy
gap between electronic states becomes comparable to that be-
tween vibrational states in excited states. As a consequence, the
interaction with ultra-short laser pulses then prepares a superpo-
sition of vibronic states, i.e. nuclear wave packets belonging to dif-
ferent electronic states which are coupled non-adiabatically.

Coupled electron-nuclei dynamics was investigated in the pio-
neering studies of Zewail and co-workers in experiments on alkali
halides and, in particular, on the NaI molecule [2–7]. Adopting a
diabatic picture [8] where the potential curves of two states cross
but are coupled via a potential matrix element, the laser induced
dynamics in NaI proceeds in a dissociative state which is coupled
to a bound state. This gives rise to the predissociation dynamics
where successively fractions of the initially prepared wave packet,
which performs a quasi-bound motion, enter into the dissociation
channel producing atomic fragments Na and I [9–16]. Within an
adiabatic picture, the potentials of the two electronic states exhibit
an avoided crossing which is a typical behavior in diatomic alkali
halides [17]. If more than one vibrational degree of freedom is in-
volved, electron-nuclei coupling gives rise to the phenomenon of a

conical intersection [18–20] which causes a complicated vibronic
dynamics [21,22].

In the present work we first investigate a restricted model in a
single nuclear degree of freedom (x) and two electronic states. The
potential curves (diabatic and adiabatic) are shown in Fig. 1. Such
curves are commonly used to describe electron [23] or, in general,
charge-transfer processes taking place along a reaction coordinate
[24]. In fact, the parameters used in setting up the potentials are
taken from former studies on the charge transfer properties of
mixed valence compounds [25,26]. The scenario evolving from
the picture in Fig. 1 is as follows. Starting in a ‘symmetry broken
state’, i.e., in the local configuration where the wave function is
localized in the potential well of Vd

1, an excitation promotes this
wave function into the second electronic state with potential Vd

2.
Afterwards, a wave-packet motion takes place where, due to the
coupling, population is transferred between the two electronic
states. This, eventually, leads to a periodic exchange of population
(if relaxation processes are neglected) where the time scale for the
exchange is determined by the nuclear wave-packet dynamics.

In this paper, we show that besides the expected time-depen-
dence of the populations in the electronic states a second kind of
oscillations can be seen which are related to Rabi-oscillations as
discussed in the case of strong field laser-excitations [27]. These
oscillations are highly sensitive to various parameters of the sys-
tem and, in particular, are influenced critically by the nuclear
wave-packet dynamics. In Section 2 we define the single-mode
model used to describe the vibronic wave-packet dynamics and
also its extension to several degrees of freedom. The results are
presented in Section 3 which also contains a short conclusion.
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2. Model

Taking only a single degree of freedom into account, we employ
a Hamiltonian with two electronic states j1i and j2i as:

ĤdðxÞ ¼
X2

n¼1

jni Hd
nðxÞ hnj þ j1i J h2j þ j2i J h1j; ð1Þ

with the vibrational Hamiltonians:

Hd
nðxÞ ¼ �

1
2m�

d2

dx2 þ kðx� xnÞ2: ð2Þ

Here, x is a dimensionless coordinate for the vibrational degree of
freedom, and the effective mass is taken as m� = 1005 eV�1 [26].
The equilibrium distances of the two shifted harmonic oscillators
are x1 = 0.5 and x2 = �0.5, respectively. The oscillators are coupled
by a constant coupling element J. We choose a value of
k = 0.917 eV (reorganization energy), and the coupling is fixed to a
value of J = 0.237 eV.

The potentials Vd
nðxÞ of the two diabatic states are shifted har-

monic oscillator curves and are displayed in Fig. 1. Also shown
are the adiabatic potentials Va

�ðxÞ obtained by diagonalization of
the diabatic potential matrix:

Va
�ðxÞ ¼

Vd
1ðxÞ þ Vd

2ðxÞ
2

� 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Vd

2ðxÞ � Vd
1ðxÞ

� �2
þ 4J2

r
: ð3Þ

The diabatic potentials cross at the point xc = 0. For the chosen cou-
pling, the adiabatic potentials are well separated.

Given an initial (diabatic) wave function wdðx; t ¼ 0Þ, we numer-
ically solve the time-dependent Schrödinger equation [28]:

i
@

@t
wd

1ðx; tÞ
wd

2ðx; tÞ

 !
¼ � 1

2m�
d2

dx2 1þ
Vd

1ðxÞ J

J Vd
2ðxÞ

 !" #
wd

1ðx; tÞ
wd

2ðx; tÞ

 !
;

ð4Þ

where 1 is the unit matrix. This yields the time-dependent two-
component wave function from which we calculate the populations
(n = 1,2):

PnðtÞ ¼
Z 1

�1
dx jwd

nðx; tÞj
2 ¼

Z 1

�1
dx qd

nðx; tÞ; ð5Þ

where qd
nðx; tÞ denotes the probability density in state jni.

Below, we also regard the ‘adiabatic’ wave functions which are
obtained as

waðx; tÞ ¼ D̂�1 wdðx; tÞ
� �y

¼ wa
þðx; tÞ;w

a
�ðx; tÞ

� �
; ð6Þ

where D̂�1 is the inverse of the matrix D̂ which diagonalizes the dia-
batic potential matrix.

To investigate if the effects found in the single-mode model are
still present in a more complex situation, we extend the descrip-
tion and include more vibrational degrees of freedom. The time-
propagation is performed with the Multi Configuration Time
Dependent Hartree (MCTDH) method [29,30], using the Heidelberg
program-package [31]. As vibrational (diabatic) Hamiltonian in
state jni we choose

Hd
n ¼

XN

i¼1

� 1
2m�

@2

@x2
i

þm�

2
x2

i ðxi � xn0Þ2
 !

; ð7Þ

where N is the number of vibrational degrees of freedom. We em-
ploy two different parameter sets with N ¼ 3 and values of the
vibrational frequencies of (a) x1 ¼ 0:06 eV, x2 ¼ 0:05 eV,
x3 ¼ 0:03 eV, and (b) x1 ¼ 0:1262 eV, x2 ¼ 0:1178 eV,
x3 ¼ 0:0740 eV, respectively. The parameter set (a) is chosen to
be within the range of the parameters used in the single-mode
model whereas the set (b) is taken from Ref. [32]. In addition,
five-dimensional calculations with the parameter set (b) and the
additional frequencies x4 ¼ 0:1060 eV and x5 ¼ 0:1032 eV are
performed. The mass is set to one and the displacements xn0 are ad-
justed such that the energetic distance at the initial position of the
wave packet is kept fixed at a value of k ¼ 1:1725 eV in all cases.
Fixing the equilibrium distances in state j1i to x10 = 0, this leads
to values of (a) x20 ¼ 18:303 eV�1/2, ((b), N = 3) x20 ¼ 8:153 eV�1/2,
and ((b), N = 5) x20 ¼ 6:5177 eV�1/2, respectively. The coupling is
set to J ¼ 0:25 eV.

3. Results

We start with the single-mode model and an initial wave func-
tion wdðx;0Þ ¼ ð0;ud

10ðxÞÞ, where ud
10ðxÞ is the ground-state har-

monic oscillator wave function in state j1i. Thus, state j1i is not
populated initially. This, not surprisingly, changes as a function
of time which can be taken from the population dynamics illus-
trated in Fig. 2, panel (a). It is seen that oscillations with different
periodicities are present: a periodic population transfer occurs
with a period of Tv � 66 fs, and faster oscillations with a period
of TR � 4 fs are found at early times (t < 10 fs) and after the period
at t ¼ Tv .

To analyze the time-dependence of the populations we regard
the wave-packet dynamics in the system. In Fig. 3, the density
dynamics taking place within the first 100 fs is illustrated. Shown
are the densities obtained from the diabatic (left hand panels) and
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Fig. 1. Diabatic potentials Vd
nðxÞ and adiabatic potentials Va

�ðxÞ for a coupling of
J = 0.237 eV and re-organization energy k = 0.917 eV. For the propagation, a
Gaussian wave packet is placed in the diabatic state j2i whereas state j1i is not
populated initially.

0

0.5

1

P nd (t
)

0

0.5

P nd (t
)

P
1
(t)

P
2
(t)

0 20 40 60 80 100

time [fs]

0

0.5

P nd (t
)

(a)

(b)

(c)

Fig. 2. Population dynamics in the two diabatic states, as indicated. The popula-
tions for the complete vibronic motion is displayed in panel (a). The curves in panel
(b) are obtained if the kinetic energy operators in the propagators are neglected,
and the dynamics for a two-level system is shown in panel (c).
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