
Structural characterization of ice polymorphs from self-avoiding walks

Carlos P. Herrero ⇑
Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049 Madrid, Spain

a r t i c l e i n f o

Article history:
Received 22 January 2014
In final form 21 May 2014
Available online 29 May 2014

Keywords:
Ice
Self-avoiding walks
Topology
Entropy

a b s t r a c t

Topological properties of crystalline ice structures are studied by means of self-avoiding walks on their H-
bond networks. The number of self-avoiding walks, Cn, for eight ice polymorphs has been obtained by
direct enumeration up to walk length n ¼ 27. This has allowed us to determine the ‘connective constant’
or effective coordination number l of these structures as the limit of the ratio Cn=Cn�1 for large n. This
structure-dependent parameter l is related with other topological characteristics of ice polymorphs, such
as the mean and minimum ring size, or the topological density of network sites. A correlation between
the connective constant and the configurational entropy of hydrogen-disordered ice structures is
discussed.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Water exhibits a wide variety of solid phases, which are
referred to as forms of ‘ice’. Most of these phases are produced
by the application of high pressures, which yields a denser packing
of water molecules than in the usual hexagonal ice Ih. Thus, sixteen
different crystalline ice phases have been identified so far [1–3],
and their stability range in the temperature–pressure phase dia-
gram has been investigated for several decades. Some of their
properties lack, however, a complete understanding, mainly due
to their peculiar structure, where hydrogen bonds between adja-
cent molecules give rise to the so-called ‘water anomalies’ [4,1,5].

In the known ice phases except ice X, water keeps its molecular
character, building up a network connected by H-bonds. In this
network each water molecule is surrounded by four others, in such
a way that its orientation with respect to the neighboring ones ful-
fills the so-called Bernal–Fowler ice rules [6,1]. These rules allow
for the presence of orientational disorder in the water molecules,
which causes that in several ice phases hydrogen atoms present
a disordered spatial distribution, as indicated by a fractional occu-
pancy of their lattice sites. Thus, hexagonal ice Ih, the stable phase
of solid water under normal conditions, displays hydrogen disorder
compatible with the ice rules, whereas other phases such as ice II
are H-ordered [7,8].

Given the number of ice structures, a unifying classification can
help to deeper understanding of their specific properties [9,7]. For
crystalline solids, classification schemes usually rest on the space
symmetry, short-range atomic environments, or geometrical

aspects of packing of structural units. These classification proce-
dures have a geometrical nature, as their main criteria are geomet-
rical characteristics of crystal structures [10–13]. These geom
etrical classification methods, however, can be hardly applicable
to find relations between solids whose structures are somewhat dis-
torted. A possible alternative consists in using classification schemes
relying on topological criteria. This means centering attention
mainly on the organization of interatomic bonds in a crystal struc-
ture as a basic criterion for a crystal-chemical analysis. In this line,
topological properties of crystalline solids have been taken into
account along the years to describe properties of different types of
materials [10,12,11]. For the ice polymorphs, a discussion of differ-
ent network topologies and the relation of ring sizes in the various
phases with the crystal volume was presented by Salzmann et al.
[7]. Topological studies of three-dimensional (3D) hydrogen-
bonded frameworks in organic crystals have also helped to classify
this kind of structures [14]. Moreover, graph theory has been used
to study isotypism and order/disorder problems in crystal structures
[13,8,15].

A direct and rather simple topological classification of ice struc-
tures can be based on structural rings, i.e., loops of water molecules
characteristic of each polymorph [7]. A more elaborate procedure
can be based on the so-called ‘coordination sequence’, defined as
a series of numbers fNkgðk ¼ 1;2; . . .), where Nk is the number of
sites located at a topological distance k from a reference site [16–
19]. The coordination sequence can be used to define a topological
density, as a structural characteristic related to the increase in the
number Nk of sites accessible through k links in a given structure
[20,17,21]. Note that these concepts are based only on the topology
of the considered network, and are not affected by lattice distor-
tions or other structural factors. These concepts have been recently
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applied to ice polymorphs, allowing us to find a correlation
between topological density and volume [22].

In this paper, a different way to characterize the ice polymorphs
is introduced. Namely, it is based on self-avoiding walks in the cor-
responding structures. A self-avoiding walk (SAW) is a sequence of
moves on a network that does not visit any node more than once.
Contrary to unrestricted walks, SAWs contain implicit information
on the topology of the considered network, as they are sensitive to
characteristics such as the number and size of loops present in the
structure. A particularly interesting parameter is the so-called con-
nective constant or effective coordination number of the ice net-
works, which can be calculated from the long-distance behavior
of the number of possible SAWs in the corresponding structures.
These concepts are explained in detail in the following section.

The purpose of this paper is twofold. On one side, knowledge of
the connective constants of ice structures is interesting from a basic
point of view for their comparison with other crystal structures, for
which this kind of statistical-mechanics questions have been ana-
lyzed in detail. On the other side, they are relevant for a topological
and physico–chemical characterization of ice phases, allowing us to
connect structural and thermodynamic properties of this type of
solids. In particular, the configurational entropy associated to the
hydrogen distribution on the available lattice sites is known to
depend on the ice structure [23–25], so that a search for structural
variables suitable to quantify in some way such a dependence is
worthwhile in the context of ice thermodynamics.

2. Computational method

In order to study SAWs for the different ice polymorphs, we
consider each structure as defined by the positions of the oxygen
atoms. One has thus a network, where the nodes are O sites, and
the links are H-bonds between nearest neighbors. The network
coordination is four (z ¼ 4), which gives a total of 2N links, N being
the number of nodes. We implicitly assume that on each link there
is one H atom.

A self-avoiding walk on an ice network is defined as a walk in
the simplified structure which can never intersect itself. On a given
network, the walk is restricted to move to a nearest neighbor site
during each step, and the self-avoiding condition constrains the
walk to occupy only sites which have not been previously visited
in the same walk [26–28]. We illustrate the application of this def-
inition to ice Ih in Fig. 1, where an eight-step SAW is shown. Note
that the link indicated with a cross is not available for step n ¼ 8, as
the walk would reach a node already visited in an earlier step.

SAWs have been used in condensed-matter science for several
purposes. For instance, they were employed for modeling the
large-scale properties of long-flexible macromolecules in solution
and adsorbed on surfaces [27,29–31], as well as for the study of
polymers trapped in confined regions, gel electrophoresis, and size
exclusion chromatography, which deal with the transport of poly-
mers through membranes with very small pores [32–34]. They
have been also employed in the analysis of critical phenomena in
lattice models [26,35–38], and to study complex networks [39–
41]. Moreover, SAWs with multiple site weightings and restrictions
have been discussed in the literature [42,43].

Given a network and a site i in it, we will call Ci
n the number of

different SAWs of length n starting from this site. For networks
where all sites are topologically equivalent, the sequence fCi

ng
1
n¼1

will coincide for all nodes, but in general, sequences corresponding
to different nodes in a network may be different. (Note that for all
sequences mentioned in the following n is understood to run from
1 to 1, although not explicitly indicated.) It is important to recall
that crystallographically equivalent sites are always topologically
equivalent, but sites non-equivalent crystallographically may be

topologically equivalent or not [22]. Then, we define an average
sequence fCng for each network, where for a given n; Cn is
obtained by averaging the Ci

n values for the oxygen sites in the unit
cell:

Cn ¼
1
M

X
i

mi Ci
n: ð1Þ

Here mi is the multiplicity of site i in the unit cell and M ¼
P

imi. For
ice structures including oxygen sites topologically non-equivalent
(e.g., ices III, IV, V, VI, and XII; see Ref. [22]), relative differences
between Ci

n values corresponding to different sites in a given struc-
ture decrease fast with the walk length n. In fact, the relative differ-
ence is about 1% for n ¼ 25, and becomes negligible in the large-n
limit.

It is remarkable that universal constants are known to describe
some properties of self-avoiding walks. These constants depend on
the network dimension, and have been discussed in detail in the
literature [44,45]. Other parameters controlling the long-distance
behavior of SAWs are network-dependent, and can be used to char-
acterize different networks with the same dimension. Analytical
expressions describing the asymptotic behavior of SAWs for large
n are significantly different from those of unrestricted walks. It is
particularly interesting the dependence of Cn on the number of
steps n for long walks. Its asymptotic behavior for large n is known
to be given by [44–46]

Cn � nc�1ln; ð2Þ

where c is a critical exponent which takes a value � 7=6 for 3D
structures [45,47,48], and l is the so-called ‘connective constant’
or effective coordination number of the corresponding structure
[27,45,46].

Defining the ratio

xn ¼
Cn

Cn�1
ð3Þ

one has

xn � l 1þ 1
n� 1

� �c�1

�!n!1l ð4Þ

Fig. 1. Sketch of the ice Ih structure with an eight-step self-avoiding walk. A cross
indicates a non-allowed step.
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