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a b s t r a c t

A set of three different scaling laws is investigated, which are devoted to link the transport properties, i.e.
diffusion coefficient, shear viscosity, bulk viscosity and thermal conductivity, to the thermodynamic
properties for the athermal hard-sphere system, over the wider range of packing fraction covering the
stable and metastable regimes. Except for the thermal conductivity, the Rosenfeld (1999) [15] relation
is found to be applicable to the stable states while the Adam and Gibbs (1965) [24] relation holds well
for the metastable states. In contrast, the modified Cohen and Turnbull (1959) [25] relation proposed
here gives sound support for a universal scaling law connecting the dynamic and thermodynamic prop-
erties, over the domain of packing fraction including the stable and metastable states. In particular, it is
found that the most relevant control parameter is not the excess entropy, but the logarithm derivative of
the excess entropy with respect to the packing fraction. In the same context, the Stokes–Einstein relation
between the diffusion coefficient and the shear viscosity is also examined. The possible violation of the
Stokes–Einstein relation is investigated over a large domain of packing fractions.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The hard-sphere system has a prominent position in the study
of real fluids. Specifically, equations of state for fluids may be based
upon the assumption that, in the limit of high temperature, the real
fluids behavior approaches that of hard spheres. For a long time,
the equation of state (EOS) has been the object of many analytical
[1–3] and simulation [4,5] studies, the last one being based on the
chemical potential route [6]. However, the Carnahan and Starling
[7] EOS seems to be the most accurate with a remarkable degree
of simplicity.

The hard-sphere (HS) system constitutes also the simplest model
to tackle a variety of specific issues such as the mathematics of dis-
ordered jammed packing [8] or the phase transitions in condensed
matter physics [9]. When crystallization is avoided owing to a den-
sification sufficiently rapid of the system, the hard spheres at ther-
mal equilibrium are less and less mobile, and eventually exhibit a
glassy behavior at large volume fraction, in analogy with the glass
transition of molecular liquids. For large packing fractions, the sys-
tem is not globally ergodic over the entire configuration space, but
it is still possible to generate a metastable extension of the EOS for
the HS system beyond the freezing density by considering properties

of local minima of a multidimensional potential function within the
inherent structure formalism [10]. The movements of the hard
spheres are much like those of a vibrating box of ball bearings. If
the packing fraction is not too high, each particle can wiggle. But
when the packing fraction is high enough, the space available to each
particle is constricted, and any significant displacement of one par-
ticle must be accompanied by rearrangements of several neighbor-
ing particles.

While the thermodynamics of the HS system is well understood
for a fairly long time in the context of various statistical mechanics
theories [11–13], the transport properties, i.e. self-diffusion coeffi-
cient, viscosity, thermal conductivity, are less amenable to accurate
theoretical calculation and require intense molecular dynamics
computations. Owing to a natural extension of the Boltzmann
equation devoted to diluted gas, the Enskog theory provided the
first prediction of the transport properties of the HS system. After
successive improvements, the Enskog theory to account for the
effect of density has also been widely used as a basis for predicting
the transport properties of real fluids.

A first attempt to find a semiempirical relation between dynam-
ics and thermodynamics of strongly coupled simple fluids has been
probably achieved by Rosenfeld [14], by establishing a correspon-
dence between the transport coefficients and the excess entropy.
Later the work has been extended to moderate and dilute fluids,
making general predictions about transport properties in agreement
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with simulation results [15]. Such a point of view has also been
adopted to test this scaling law for the diffusion coefficient of
silver-ion in the solid-state ionic conductor for a-AgI [16] and for
the self-diffusion coefficient in dense fluid Ar [17] and simple liquid
metals [18,19] as well. In the same spirit, we proposed a relation
between the diffusion coefficient and the excess entropy for the
HS system above the freezing transition, i.e. for low values of the
packing fraction [20].

However, the excess entropy seems to lose relevance for low
temperatures, and it does not generally correlate with transport
properties below the freezing transition [10]. As a result, the excess
entropy cannot provide a comprehensive description of metasta-
ble-state diffusivity. In contrast, experimental support for the pre-
diction of the dynamic properties near the glass transition reveals a
quantitative link between the transport properties and the config-
urational entropy in supercooled real liquids [21,22], so that liquid
diffusion seems to be a process dominated by thermodynamic fac-
tors, even if attempts to correlate kinetic properties with the ther-
modynamic behavior have been controversial, at least in molecular
liquids [23]. For the purpose, the Adam–Gibbs theory [24] of struc-
tural relaxation is often used, which suggests a link between equi-
librium thermodynamics and diverging times scale, i.e. transport
properties, when the configurational entropy is equal to zero. Up
to then, the entropy Adam–Gibbs theory seems to provide a better
showing than the free-volume theory developed by Cohen and
Turnbull [25], which has been widely used in the case of polymers.

In this article, we prolong our study [20] on the HS system
towards the metastable states with the Torquato [26] equation
of state. Since the Rosenfeld and Adam–Gibbs relations are capable
of describing the self-diffusion coefficient for many liquids in the
stable and metastable states, respectively, it is of interest to ask
whether the two relations contain the same thermodynamic
information and if Rosenfeld’s relation can be used as an
alternative to the Adam–Gibbs relation. At the same time, we
re-investigate the Cohen–Turnbull theory in order to correlate
the transport coefficients with the thermodynamic behavior of
the HS system.

This paper is organized as follows. In Section 2, the main results
of thermodynamics are presented, i.e. pressure and entropy of the
HS system around the freezing density. Section 3 briefly resumes
the Enskog expressions for the transport coefficients of the HS sys-
tem. Section 4 contains a comparison of the scaling relations pro-
posed by Rosenfeld and by Adam and Gibbs for setting the
correlation between the transport properties and thermodynamics
of the HS system. On the other hand, recasting the free volume
Cohen–Turnbull theory in a more transparent form, we derive a
new semiempirical relation linking the transport coefficients to
the compressibility factor Z instead of the excess entropy, which
is competitive with the two other relations to describe the dynam-
ics of the HS system, in stable and metastable regimes. Surpris-
ingly, it results from it that the logarithm derivative of the excess
entropy with respect to the packing fraction is found to be the
most relevant quantity for checking the diffusive displacement.
Lastly, the possible violation of the Stokes–Einstein relation –
combining the diffusion coefficient with the shear viscosity – is
investigated for the stable and metastable states of HS system.

2. Thermodynamics of the hard-sphere system

The HS system corresponds to a collection of N particles, of
diameter r, contained in the volume V and interacting by means
of the potential uðrÞ equals to1, if r < r, and to 0, if r > r. The tra-
ditional dimensionless measure of the density qð¼ N=VÞ is the
packing fraction g, defined as the fraction of the total volume occu-
pied by the spheres and whose the expression is:

g ¼ p
6

qr3: ð1Þ

An important quantity of the HS system is the pair correlation func-
tion gðr; gÞ, which is proportional to the conditional probability of
finding a particle at position r0 given that another particle is located
at position r, under the condition that gðr;gÞ ¼ 0 if r < r. Thus, the
thermodynamic properties are calculated as integrals involving the
pair correlation function gðr;gÞ and the pair potential uðrÞ. As an
example, the statistical theory provides the expressions for the
pressure p and the internal energy E in the following forms:

p ¼ q
b
� 2pq2

3

Z 1

0
gðr;gÞ du

dr
r3dr ð2Þ

and

E ¼ 3N
2b
þ 2pqN

Z 1

0
gðr;gÞuðrÞr2dr; ð3Þ

with b ¼ 1=kBT , where kB is the Boltzmann constant and T the tem-
perature. Given the definitions of the pair potential uðrÞ and the pair
correlation function gðr; gÞ, the interaction energy of the HS system
is equal to zero. On the other hand, since the hard spheres in liquid
state are large enough, there is no thermal motion in the system,
which is completely driven by the entropy. Therefore the tempera-
ture is irrelevant and the thermodynamic properties are fully con-
trolled by the packing fraction g.

The most notable achievement of simulation computations has
been to clarify the circumstances of freezing under compression,
from small to large packing fractions. As pointed out [4,5], the HS
liquid freezes at the packing fraction gf ’ 0:494 and the solid melts
at the packing fraction gm ’ 0:545. Besides, computer simulations
have shown unambiguously that the liquid–solid transition occurs
spontaneously, apparently at random, over an interval of confusion

gf ;gm

h i
, in such way that it is not possible to have two states

simultaneously in equilibrium on the liquid and solid branches.
For packing fraction varying from zero to gf , the thermodynami-
cally stable phase is a liquid. Increasing the packing fraction
beyond gf results in an athermal first-order phase transition to a
solid branch that begins at the melting point gm and ends at the

close-packed fcc value gfcc ¼ p
ffiffi
2
p

6 ¼ 0:7405, which is a jammed
packing where each particle is in contact with 12 others.

If the Carnahan–Starling (CS) equation of state [7] is chosen to
predict the pressure of the liquid branch of HS system – which
has some merits in terms of the virial series and agrees very well
with the results deduced by simulation –, Eq. (2) is reduced to:

bpðCSÞ

q
¼ 1þ 4g

1� g=2ð Þ
1� gð Þ3

; ð4Þ

where 1�g=2ð Þ
1�gð Þ3

represents the pair correlation function at contact

gðr;gÞ. The change of entropy in the liquid state can easily be cal-
culated by integration of the pressure with respect to the density
using the following thermodynamic relation, which links the excess
entropy to the pressure:

Sex

NkB
¼ �

Z g

0

bp
q
� 1

� �
dg
g
: ð5Þ

From the CS EOS, the excess entropy along the liquid branch reads:

SðCSÞ
ex

NkB
¼ �4g� 3g2

1� gð Þ2
: ð6Þ

Since the HS system tends to an ideal gas in the limit of low packing
fraction, the absolute entropy of the HS system in liquid state is:

SðCSÞ

NkB
¼ Sid

NkB
þ SðCSÞ

ex

NkB
; ð7Þ
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