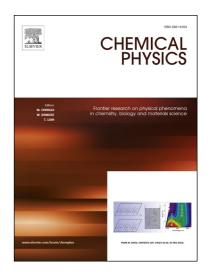
Accepted Manuscript

Graphene and Graphite, Low Temperature Catalysts Producing Weakly-Excited Hydrogen Molecules

Wilhelm Brenig, Tanglaw Roman


PII: S0301-0104(14)00158-X

DOI: http://dx.doi.org/10.1016/j.chemphys.2014.05.018

Reference: CHEMPH 9110

To appear in: Chemical Physics

Received Date: 14 March 2014 Accepted Date: 23 May 2014

Please cite this article as: W. Brenig, T. Roman, Graphene and Graphite, Low Temperature Catalysts Producing Weakly-Excited Hydrogen Molecules, *Chemical Physics* (2014), doi: http://dx.doi.org/10.1016/j.chemphys. 2014.05.018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Graphene and Graphite, Low Temperature Catalysts Producing Weakly-Excited Hydrogen Molecules

Wilhelm Brenig

Physik Department, Technische Universität München, D-85747 Garching bei München, Germany

Tanglaw Roman*

Institute of Theoretical Chemistry, Ulm University, D-89069 Ulm, Germany

Abstract

A model for the low-temperature catalysis of hydrogen molecules on graphene and graphite, relevant for interstellar chemistry, is proposed: hydrogen atoms are either chemisorbed at the edges, or physisorbed on graphene and transported to a chemisorbed state at the edges. A second atom can then produce a molecule via a hot atom or an Eley-Rideal process. Since much of the energy is needed to desorb the molecule from the tightly-bound chemisorbed state, the desorbing molecules have only low internal excitation energy, in agreement with astronomical observations.

The formation of hydrogen molecules from the recombination of H atoms in the interstellar medium is crucial to the formation of prestellar clouds. It is assumed that this occurs via catalytic processes on the surface of dust grains. A large portion of the dust grain composition in diffuse regions of the interstellar medium is thought to be of carbonaceous material. Many theoretical investigations have therefore been concentrated on graphene or graphite [1, 2]. Here, we do not consider dense clouds where the grains are probably covered by ice mantles but concentrate on diffuse clouds containing graphene and graphite

Email address: tanglaw.roman@uni-ulm.de (Tanglaw Roman)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/5373612

Download Persian Version:

https://daneshyari.com/article/5373612

<u>Daneshyari.com</u>