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a b s t r a c t

A surface hopping expansion of the nonadiabatic wave function is generalized to account for hops from
the forbidden region on one adiabatic energy surface to a different adiabatic surface in multidimensional
problems. This analysis is motivated by previous surface hopping calculations on one dimensional mod-
els that provide very accurate transition probabilities, even at low energies, if classically forbidden hops
are included in the calculations. It is shown that hops from the classically forbidden region in the previ-
ous form of the surface hopping expansion cannot, in general, lead to classically allowed final state tra-
jectories in multidimensional problems. The surface hopping wave function is generalized to allow for
two or more hops at each point along the trajectory. These hops correspond to different directions for
the energy conserving momentum change, which gives different post-hop trajectories. This generaliza-
tion allows for the final state trajectory to be classically allowed if the post-hop adiabatic energy surface
has sufficiently low energy.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Transitions between the electronic states of atoms and mole-
cules are an essential component of many processes in chemical
physics. A number of different semiclassical methods have been
devised in order to model these nonadiabatic processes [1–38].
These include Ehrenfest methods [3–7], which run trajectories on
a potential that has been averaged over the multistate electronic
wave function; methods using trajectories in the complex plane
[8]; the mapping method [9–12], which replaces the multistate
electronic Hamiltonian with a set of harmonic oscillator Hamilto-
nians that can be included in the semiclassical calculation; and sur-
face hopping approaches [13–38], which include abrupt hops
between different adiabatic electronic states.

A specific form of the surface hopping wave function has been
developed to formally satisfy the Schrodinger equation [33,34] in
the sense that every term in ðĤ� EÞw can be shown to be cancelled
by some other term. The lowest order term in this surface hopping
wave function is just the primitive semiclassical single surface
wave function. The higher order terms include energy conserving
hops between adiabatic electronic surfaces and single surface prim-
itive semiclassical propagation between hops. The component of
the momentum in the direction of the nonadiabatic coupling is

altered during the hop so as to satisfy energy conservation. There
are additional correction terms in the expansion that involve
momentum changes without hops along the trajectories. These
terms correct for the semiclassical nature of the single surface prop-
agation [39]. Since these non-hopping correction terms are typi-
cally neglected in numerical calculations, the resulting method is
a semiclassical surface hopping expansion. It has also been shown
that the initial value representation version of the semiclassical sur-
face hopping expansion satisfies the Schrodinger equation to order
�h, which is the order expected for semiclassical methods [32].

Calculations on one dimensional model problems have demon-
strated that numerical procedures based on this surface hopping
expansion provide very accurate results [38]. They also show that
the inclusion of hops in the classically forbidden region can signif-
icantly improve the accuracy of the calculated transition probabil-
ities at low energies [35–38]. In many dimensional problems, the
momentum vector has perpendicular real and imaginary compo-
nents in the classically forbidden region, p ¼ pR þ ipI [44–47]. This
is problematic for the semiclassical surface hopping expansion as
presented previously [33,34], since the momentum change accom-
panying a hop between Born Oppenheimer (BO) electronic states
ui and uj occurs in the direction of the nonadiabatic coupling vec-
tor, gij. In general, both pR and pI have components in the direction
of gij and perpendicular to it. Since the perpendicular components
are unchanged in the hop, the post-hop momentum will have a
nonzero pI. As a result, the post-hop portion of the trajectory
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corresponds to a classically forbidden trajectory on the final sur-
face, even if the hop is from a high energy surface to a lower energy
surface.

It is shown in this paper that this problem can be removed by
expressing the nonadiabatic coupling vector as a sum of (at least)
two perpendicular components, gif ¼ gifa þ gifb, and choosing one
of these to be parallel to the imaginary component of the momen-
tum in the forbidden region. A hop at point rh from state ui to state
uf with its momentum change, Dp, in the gif direction in the pre-
vious surface hopping expansion is replaced with a hop between
these states at rh with its Dp in the gifa direction and a hop between
these states with its Dp in the gifb direction in this generalized ver-
sion. Since Dp is different for these two hops, the post-hop trajec-
tories will be different. The hop in the direction parallel to pI

results in a final momentum with pI ¼ 0 as long as the energy of
the final surface is sufficiently low. On the other hand, the final
pI is nonzero for the second Dp direction, and the trajectory is clas-
sically forbidden after the hop. As such it is expected to provide a
significantly less important contribution to wðrÞ.

Section 2 demonstrates that the surface hopping wave function
formally satisfies ðĤ� EÞwðrÞ ¼ 0. The surface hopping wave func-
tion is expressed as w ¼ w0 þ w1 þ w2 þ � � � where the zeroth order
term, w0, is the primitive semiclassical wave function for the sys-
tem in the initial BO electronic state and the nth order term in-
cludes the contributions from all trajectories with n hops
between surfaces and non-hopping momentum changes. In Sec-
tion 2.1 the action of Ĥ� E on w0 is evaluated, showing the types
of terms that are produced, demonstrating the cancellation of some
of the terms which results due to the semiclassical form of w0, and
identifying the types of terms that must be canceled by the action
of Ĥ� E on the higher order terms in w. Each term in the first order
wave function, w1, has a single hop or non-hopping momentum
change and an integration over the curve of points at which this
hop or momentum change can occur for a given value of the trajec-
tory end point, r. Section 2.2 considers the cancellation of terms in
ðĤ� EÞw that have a single hop and a single integration over the
curve of points for the hop. This cancellation is explicitly shown
for single integration terms that are of order �h0 or �h1 arising from
the action of ðĤ� EÞ on the single hop term in w. The details of the
cancellation of all other terms having a single hop and a single
integration are provided in the supplementary data. This cancella-
tion is first demonstrated for this type of term because it is the
simplest case in which all complications due to the multidimen-
sional nature of the problem are present. It is shown that the
amplitudes for the hops for this generalized expansion are simple
generalizations of those used in previous work [33,34]. However,
the amplitude for the non-hopping momentum changes differs
somewhat from that used previously, correcting for a feature ne-
glected in that work [33,34]. It is then discussed in Section 2.3
how the results obtained in Section 2.2can be applied to all terms
in ðĤ� EÞw ¼ 0 by simply changing the number and sequence of
hops and momentum changes and the corresponding number of
integrations over points at which these hops and momentum
changes occur.

Model surface hopping calculations for a 2-d, two state scatter-
ing problem are presented in Section 3 and compared with exact
quantum results. The calculations are evaluated in the small inter-
action (i.e., single hop) limit, so that they can be performed without
the use of a Monte Carlo (MC) procedure. Since there is no sam-
pling error, this allows for a more accurate comparison between
the surface hopping and quantum results. The differential cross
section, dr/dh, is evaluated as a function of the outgoing going
direction of the hopping trajectories, h. While the accurate calcula-
tion of dr/dh would be very difficult in a MC calculation, the eval-
uation of dr/dh provides for a more demanding comparison of the

quantum and surface hopping results than would be provided by
the calculation of the integrated final state cross section, r, which
could be evaluated in a MC calculation. Since the full surface hop-
ping wave function formally satisfies the Schrodinger equation, it
is reasonable to assume that the level of accuracy found in the cal-
culations presented here would be preserved in more realistic
calculations.

The implications of the formal analysis and the results for the
model calculations are discussed in Section 4.

2. Theory

The surface hopping expansion of the wave function is based on
the single surface semiclassical wave function. The semiclassical
amplitudes and phases for the wave function are integrated along
trajectories for the motion of the nuclei. These trajectories obey the
classical equations of motion on each BO electronic energy surface,
and they have energy conserving hops between the different en-
ergy surfaces. They also have changes in the direction of the
momentum without a change in electronic state. These hops and
momentum changes are referred to as non-classical events (NCEs)
in this work. The wave function is expressed as an expansion with
the nth order term including the contribution from trajectories
with n NCEs. The NCEs can occur at any point along the trajectory,
and each term in the wave function includes integrations over the
points at which the NCEs occur. It is shown that the wave function
constructed from the NCE containing trajectories formally satisfies

the TISE by demonstrating that all terms in ðĤ� EÞw sum to zero. It
has been previously shown by a different method that this wave
function expansion satisfies the Schrodinger equation in one
dimension [31]. Therefore, the types of NCEs required and the form
of each term is known for 1-d case, and the form of the wave func-
tion in this work is the generalization of the one dimensional wave
function to many dimensions. The form of the terms that arise

from the action of Ĥ� E on the zeroth order term in w is first con-
sidered. Then it is explicitly demonstrated that all terms with a sin-

gle integration in ðĤ� EÞw sum to zero. The cancellation of the
single integration terms is considered in detail since this is the sim-
plest case that involves all complications arising from the many
dimensional nature of the problem. This same analysis can then

be applied to all terms in ðĤ� EÞw by simply changing the number
and type of NCEs, the number of integrations over the positions of
the NCEs, and the number of summations over the components g.

2.1. Zero integral terms in ðĤ� EÞw

Let ujðrÞ be the jth Born–Oppenheimer electronic state. The

Hamiltonian for the system is Ĥ ¼ � �h2

2mr
2 þ V̂ ¼ K̂þ V̂. The poten-

tial energy operator is defined such that V̂uj ¼ V jðrÞuj, where V jðrÞ
is the BO energy for state uj. The wave function is expressed as
wðrÞ ¼ w0ðrÞ þ w1ðrÞ þ w2ðrÞ þ � � �, where wnðrÞ is the contribution
from trajectories containing n NCEs and ending at r. It is assumed
in this work that the incoming d-dimensional wave function corre-
sponds to the system in a specific adiabatic electronic state, ui, that
the incoming wave function is known everywhere on a d-1 dimen-
sional surface in the asymptotic region, and that this surface is cho-
sen such that the phase of the initial wave function is constant on
it. This surface, Si, and the value of the semiclassical wave function
at each point on it define the wave function wðrÞ at energy E. The
w0ðrÞ term is given by the initial surface primitive semiclassical
wave function [40,41]

w0ðrÞ ¼
X

uiAieiW i=�h ð1Þ
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