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a b s t r a c t

Starting from the quasi-probability distribution function by electron positions r and momenta p and
applying the minimum information principle subject to the certain physically-grounded constrains, we
obtained the approximate expression for phase-space-defined Fisher information density (PS-FID). It pro-
vides information about an electron momentum in the position representation and reveals the electronic
shell structure for atoms with Z 6 20 as well as the regions of maximal concentration of bonding and lone
electron pairs in molecules. Also, this function enables to recognize the different types of chemical bonds
as polar and non-polar covalent bonds, the charge-shift bond as well as the weak non-covalent molecular
interactions. We found that the PS-FID behavior results from the local electron momentum uncertainty
that is linked with both information about electron real-space position (which, in turn, is related with
electronic steric factor) and the Pauli principle.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Lewis concept of electron pairs [1] is one of the most impor-
tant in chemistry [2–4]. Physical basis for electron pairing is as fol-
lows [5–7]. In addition to Coulomb electron–electron repulsion,
the presence of a given electron in some spatial region excludes
from this region all other electrons with the same spin due to Pauli
principle. Because such a behavior is peculiar to each electron with
any spin, all electrons are maximally removed from a given region,
except the pair of the ‘spin-up’ and ‘spin-down’ electrons. Eventu-
ally, all electrons in the closed-shell systems are proved to be dis-
tributed in the pairs with different degree of localization.

However, the direct-space one-electron density, the recognized
source of the information about the chemical bonding [8,9], does
not show any signatures of the electron pairing: the electrons are
indistinguishable and distributed over a whole molecule or a crys-
tal. Therefore, the different tools have been suggested to detect the
electron localization/concentration regions. Among them are the
Laplacian of electron density [5,8,10], one-electron potential [11],
electron localization function (ELF) [12–14], localized orbital loca-
tor [15,16], electron localizability indicator (ELI) [17–19], maxi-
mum probability domains (MPD) [20–22] and conditional pair

density [23]. They have been recently supplemented by localized
electron detector (LED) [24–27], single exponential decay detector
(SEDD) [28] and information-theoretic ELF (IT-ELF) [29], steric [30]
and Pauli potentials [31]. Some of these functions are also approx-
imately derived from experimental electron density and its deriv-
atives [32–34]. These electron localization tools play nowadays
an important role in the chemical bonding analysis despite some
disadvantages. For example, Laplacian of electron density does
not display the electronic shells for many heavy atoms [35,36]
while the LED and SEDD do not show the electron lone pairs.

The concepts of Shannon information entropy [37] and Fisher
information [38], which are nowadays widely used in physics
and chemistry [39–44], provide another general approach to elec-
tronic structure of atoms, molecules and crystals [29,45–47]. Espe-
cially, Nalewajski [29] has presented the Fisher information-based
ELF to demonstrate the electron localization in molecules (IT-ELF).
In this work we show that the evidence about electron localization
in chemical systems can be derived from the phase-space-(PS) de-
fined Fisher information. We demonstrate that the PS-Fisher infor-
mation density reveals the electronic shells for atoms and detects
the most probable positions of the bonding and lone electron pairs
in molecules.

2. Method

Ghosh, Berkowitz and Parr (GBP) [48] have reformulated the
density functional theory (DFT) [49] considering the electron cloud
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in molecular systems as an electron gas in the effective external
potential. The N-electron quasi-probability distribution function
by positions r and momenta p is defined in a 6N-dimensional
phase space [50,51] as

Fðr1; . . . ; rN ;p1; . . . ;pNÞ ¼ ð2pÞ�6N
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Here Wðfrig; frigÞ is a wave function in the coordinate representa-
tion, ri and ri stand for the position and spin of ith electron, corre-
spondingly; hi, si and ui are real-space vectors and gðfhig; fsigÞ is
any function satisfying the condition gðfhig; f0gÞ ¼ gðf0g; fsigÞ ¼ 1.
When gðfhig; fsigÞ ¼ 1, function Fðr1; . . . ; rN;p1; . . . ;pNÞ is the so-
called Wigner function [50]. However, by virtue of indistinguishabil-
ity of particles, the electron interactions in a system are described by
the only two-particle phase-space distribution function,
Fðr1; r2;p1;p2Þ. Moreover, within the framework of DFT,
Fðr1; . . . ; rN;p1; . . . ;pNÞ can be reduced to the distribution function
f ðr;pÞ depending on a position and momentum of only one electron
[14]:

f ðr;pÞ ¼
Z XN

i¼1

dðr� riÞdðp

� piÞFðr1; . . . ; rN;p1; . . . ;pNÞ
YN

i¼1

dridpi: ð2Þ

The non-interacting electronic properties are extracted from f ðr;pÞ
by integration over the dynamical variables r and p. Especially, elec-
tron density qðrÞ is expressed in terms of f ðr;pÞ as

qðrÞ ¼
Z

dp f ðr;pÞ ð3Þ

and Kohn–Sham electron kinetic energy density is

tsðrÞ ¼
Z

dp
p2

2
f ðr;pÞ: ð4Þ

Unlike the function (1), which is normalized to unity, f ðr;pÞ in (2) is
normalized to the number of electrons N. There are infinite num-
bers of functions f ðr;pÞ which satisfy Eqs. (3) and (4), and not all
of them are non-negative everywhere [51,52–54]. GBP [48] have
found the most probable form of f ðr;pÞ by applying the maximum
entropy principle [55]. They define the local phase-space information
entropy as

sf ðrÞ ¼ �
Z

dp f ðr;pÞ ln f ðr;pÞ ð5Þ

and its global form is

Sf ¼
Z

drsf ðrÞ: ð6Þ

Quantity Sf is recognized as the Shannon information entropy [37],
which characterizes the information content of the function f ðr;pÞ.
Maximum information entropy principle subject to constrains (3)
and (4) leads to the Maxwell–Boltzmann distribution function for
an ideal electron gas [48]:

f ðr;pÞ ¼ qðrÞ½2pkTðrÞ��3=2 exp � p2

2kTðrÞ

� �
: ð7Þ

Here TðrÞ is the local information electron gas temperature [48,14].
Within the non-interacting particle approximation, GBP have asso-
ciated TðrÞ with electronic kinetic energy density using the relation

tsðrÞ ¼
3
2
qðrÞkTðrÞ; ð8Þ

which is analog to the main equation of the molecular kinetic the-
ory [56]. The presence of the Boltzmann constant k just emphasizes
the formal analogy between the information and thermodynamic
temperature. As opposed to the thermodynamic entropy, Sf does
not vanish for quantum–mechanical electronic ground state. It is
also not linked with the energy of the system. Note that in any sys-
tem at equilibrium the thermodynamic temperature is the same
everywhere in the r-space, while information temperature TðrÞ var-
ies with the position r.

Fisher information minimum principle [39] is another expression
of the general principle of physical information extreme. Now we
extend the GBP approach to minimize the Fisher information
[38], which quantitatively characterizes spatial structuredness of
some distribution function [39] and plays important role in the
information theory. We consider the phase-space-defined Fisher
information density (PS-FID)

if ðrÞ ¼
Z

dp
rpf ðr;pÞ � rpf ðr;pÞ

f ðr;pÞ : ð9Þ

Here the subscript p stands for the gradient, which is taken by only
momentum variables. The function if ðrÞ contains information about
structuredness (or sharpness) of electronic momentum distribution
in the position representation. The global form of the PS-Fisher
information

If ¼
Z

dp if ðrÞ; ð10Þ

characterizes the total structuredness of f ðr;pÞ relative to the elec-
tron momentum.

Let us express If as a functional of quasi-probability amplitude
gðr;pÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðr;pÞ

p
:

If ¼ 4
Z

drdprpgðr;pÞ � rpgðr;pÞ: ð11Þ

Minimization of If (11) subject to the constrains (3) and (4) leads to
the second-order differential equation

r2
pgðr;pÞ � aðrÞ þ bðrÞp

2

2

� �
gðr;pÞ ¼ 0 ð12Þ

in which aðrÞ and bðrÞ are r-depending Lagrange multipliers. Differ-
entiation in (12) is only in the momentum variables, therefore the
position r can be regarded as a parameter. Eq. (12) is formally sim-
ilar to the Schrödinger equation for a harmonic oscillator, aðrÞ being
the ‘information energy’ and bðrÞ p2

2 the ‘information harmonic po-
tential’ [57]. Solution of (12) leads to the set of the functions includ-
ing Hermite polynomials and depending on values of three integer
numbers: n1, n2 and n3. Minimum information is provided by the
solution with n1 ¼ n2 ¼ n3 ¼ 0; it yields

f ðr;pÞ ¼ AðrÞ expf�nðrÞp2g; ð13Þ

where nðrÞ ¼
ffiffiffiffiffiffiffiffiffi
bðrÞ

p
and AðrÞ is r-depending normalization factor.

Substituting (13) into (3) and (4) and taking into account Eq. (8),
we get function f ðr;pÞ in the form (7) with AðrÞ ¼ qðrÞ
½2pkTðrÞ��3=2 and nðrÞ ¼ 1

2kTðrÞ. Thus, minimization of If (11) subject
to the constrains (3) and (4) yields the same distribution function
as it has been obtained by GBP [48].

It is well-known that the exact Wigner distribution function can
attain the negative values [50], i.e., it is not probability distribution
function (in this sense we employ the term ‘quasi-probability’),
while the function f ðr;pÞ (13) is non-negative everywhere since
the multiplier AðrÞ is not defined if TðrÞ < 0. Thus f ðr;pÞ (13) is just
Wigner-like function which correctly yields the electron density
and electronic kinetic energy density in accordance with (3) and
(4), however it does not necessary provide any other local proper-
ties. Nevertheless, calculations of electron exchange energy and
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