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a b s t r a c t

We have calculated the radial distribution functions (RDFs) of liquid water on the basis of the classical
density functional theory combined with the reference interaction site model for molecular liquids.
The density expansion for the Helmholtz free energy functional is retained up to the third order in order
to take into account the effects of the bridge functions beyond the hypernetted-chain (HNC) approxima-
tion. The ternary direct correlation functions in the expression of the bridge functions are then given by a
factorization approximation in terms of the site–site pair correlation functions, thus leading to a closed
set of integral equations for the determination of the RDFs. We have obtained a numerical result in which
a poor description by the HNC approximation for the second peak of the oxygen–oxygen RDF at room
temperature has been improved to some extent by incorporating the oxygen–oxygen bridge function.
Some directions toward more satisfactory agreement with computer simulation results are addressed
as well.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Integral equation approach provides an efficient tool to calcu-
late the correlation functions and the thermodynamic properties
of liquids with high accuracy and mild cost of computation [1].
This analytical approach often gives fair results on par with those
by extensive Monte Carlo or molecular dynamics (MD) simula-
tions, and combined with the reference interaction site model
(RISM) [1–3], can comprehensively describe the equilibrium prop-
erties of molecular liquids such as liquid water [4]. Recent develop-
ments in the methods, algorithms and benchmarks [5–9] indicate
that the RISM-based integral equation approach can provide an
alternative route for theoretical analyses on water and related
aqueous systems with comparable reliability to more expensive,
computer simulation approaches. However, it has also been ob-
served [5–9] that the descriptions of intermolecular correlations
of water become less accurate at room temperature in comparison
with at higher temperatures.

Among the RISM-based integral equation formalisms for molec-
ular liquids, the density functional theory (DFT) approach due to
Chandler, McCoy and Singer [10,11] is one of the most sophisticated
and dependable methods. Donley, Curro and McCoy (DCM) [12]
then extended this DFT scheme for the calculations of pair correla-
tion functions of molecular liquids, and later, Reddy et al. [6] and
Sumi et al. [13] applied this method to the calculations of the radial

distribution functions of fluid water. Their calculated results dem-
onstrated that the DCM scheme provides accurate descriptions at
high temperatures, but the deviations from the computer simula-
tion results are observed at room temperature, e.g., in the descrip-
tion of the location of the second peak of oxygen–oxygen (O–O)
radial distribution function, which may be associated with the for-
mation of tetrahedral structure of condensed water. Considering
that the DCM theory is based on the density expansion of free en-
ergy functional up to the second order, which corresponds to the
hypernetted-chain (HNC) approximation [1,14] in liquid theory,
the present authors [15] have recently developed an extended
DCM theory for molecular liquids in which the density expansion
of free energy functional is retained up to the third order, thus tak-
ing into account the effect of the bridge functions [1,14] beyond the
HNC approximation. Their preliminary test calculation in which a
simple Gaussian approximation is employed in the factorization
[16] for the ternary direct correlation functions has, however, failed
to appropriately reproduce the simulation results for liquid water at
room temperature, suggesting the importance of incorporation of
detailed structures of correlation functions in the representation
of ternary direct correlation functions. The purpose of the present
study is thus to examine the validity and accuracy of another factor-
ization approximation to the ternary direct correlation functions in
the bridge functions,
in which the site–site pair correlation functions are employed in the
factorization according to a scheme [17] that worked well in the
one-component plasma system [14]. We will address the theoreti-
cal methods and the numerical results in the following sections.
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2. DFT–RISM method

Let us consider a liquid water system consisting of rigid H2O
molecules whose average number density and temperature are q
and T, respectively. We then assume the site–site interaction
potentials vabðrÞ between the atomic sites a and b (a; b = O, H, H,
i.e., one oxygen and two hydrogens) on two water molecules.
According to the prescription given by Donley et al. [12], the radial
distribution function (RDF) between the sites a and b is given by

gabðra � RbÞ ¼ exp
X

g
w0g rg
� �

� w0Lg

h in oD ED EP
ra ;Rb

; ð1Þ

where hh iiPra ;Rb
represents the average over the relative orientation

of two (system and external) molecules whose ath and bth sites are
fixed at ra and Rb, respectively.

wgðrgÞ ¼ �UgðrgÞ þ wLg ¼ �b
X

c
vgcðrg � RcÞ þ wLg ð2Þ

with b ¼ 1=kBT and kB being the Boltzmann constant means the
field at the gth site, rg, produced by an inserted, external molecule
[18] situated at fRg ¼ fRcg, and its deviation from the homoge-
neous (liquid L) part is expressed as

w0g rð Þ � w0Lg ’� UgðrÞ þ
X
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for the fictitious, noninteracting system denoted by the subscript
‘‘0’’ whose density profile qaðrÞ is identical to that of the real, inter-
acting system. Here, DqaðrÞ ¼ qaðrÞ � q refers to the induced den-
sity around the unperturbed, homogeneous liquid (L) state, and
the expansion with respect to DqaðrÞ has been carried out up to
the third order for the Helmholtz potential [15]. cabðr; r0Þ and
cð3Þabcðr; r0; r00Þ refer to the two-body and three-body direct correlation
functions in the liquid state [1], respectively.

We thus obtain an expression for the RDF as [15]

gabðra � RbÞ

¼ exp �b
X
g;c
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ð4Þ

Here, the two-body part is expressed as

Kðfrg;fRgÞ¼q
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with the aid of a site–site pairwise approximation for the induced
density [12], and

xabðrÞ ¼ dabdðrÞ þ ð1� dabÞdðr � LabÞ=4pL2
ab ð6Þ

with Lab being the distance between sites a and b means the intra-
molecular correlation functions. The site–site pair correlation func-
tions habðrÞ ¼ gabðrÞ � 1 and the two-body direct correlation
functions cabðrÞ are related to each other via the site–site Orn-
stein–Zernike or RISM equation [1,2],

habðrÞ ¼
X
g;r

xag � cgr �xrbðrÞ þ qxag � cgr � hrbðrÞ
� �

; ð7Þ

where � means the convolution, and

SabðrÞ ¼ qxabðrÞ þ q2habðrÞ ð8Þ

refers to the density–density correlation functions.

If we neglect the higher-order contribution Bðfrg; fRgÞ in Eq.
(4), we are led to a two-body approximation that is equivalent to
the HNC approximation [1]. The effective many-body potential

Kðfrg; fRgÞ ¼
X
g;c

Xgcðrg � RcÞ ð9Þ

with

Xgcðrg � RcÞ ¼
1

ð2pÞ3
Z

dk exp½�ik � ðrg � RcÞ�X̂gcðkÞ ð10Þ

and its Fourier transform are expressed as

X̂gcðkÞ ¼ q
X
r;n

ĉgrðkÞĥrnðkÞx̂�1
nc ðkÞ ¼

X
r;n

ĉgrðkÞŜrnðkÞĉncðkÞ; ð11Þ

or compactly by

X̂ ¼ qĉĥx̂�1 ¼ ĉŜĉ: ð12Þ

We then rewrite this expression as

X̂s ¼ x̂�1ĥx̂�1 � ĉs ¼ x̂�1ð1� qx̂ĉÞ�1
x̂ĉ � ĉs ð13Þ

with the aid of Eq. (7), where the subscript s means that the long-
range contributions have analytically been subtracted [19]. Thus,
for given ĉðkÞ, one can calculate X̂ðkÞ, XðrÞ;Kðfrg; fRgÞ, hðrÞ and
ĥðkÞ. An updated ĉðkÞ is then given by

ĉs ¼ x̂�1ĥx̂�1 � X̂s; ð14Þ

leading to a closed set of self-consistent equations.
We numerically solved the integral equations in the HNC

approximation addressed above for the correlation functions of
liquid water. We employed the SPC/E model [20] for the (rigid)
structure and intermolecular potentials for water molecules, thus
assuming a three-site (one oxygen and two hydrogens) model in
which the Lennard–Jones potential works only between the oxy-
gen (O) sites. The computational details are found in the literature
[15], where it is noted that the present DFT scheme is free from the
difficulty of divergence encountered in the usual RISM–HNC ap-
proach when the SPC-like model potentials without the additional
O-H repulsion are employed [4–6,21]. The results for the RDFs
gabðrÞ obtained by the second-order, HNC scheme are illustrated
in Fig. 1 for liquid water system at q ¼ 0:0334 Å�3 and T ¼ 300 K.
For comparison, we have also depicted the results by 10 ns MD
simulation [15] for the SPC/E water performed with AMBER 12
software [22], as well as those by a neutron diffraction experiment
[23]. In contrast to successful descriptions at higher temperatures
[6,13,15], one observes a significant discrepancy between the HNC
and MD results at room temperature, in particular concerning the
location of the second peak of gOOðrÞ that is situated at r ’ 4:5 Å in
the MD and experimental results. This observation indicates that
the O–O tetrahedral ordering in dense, low-temperature water sys-
tems is not appropriately described by the second-order, HNC
approximation for the intermolecular correlations.

3. Third-order correction

Next, we proceed to an incorporation of the triplet correlation
term in Eq. (4). According to Eqs. (1) and (3), the three-body, bridge
contribution is expressed as [15]
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