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a b s t r a c t

We present the hydrodynamic equations for the lamellar phase in lyotropic liquid crystals. The hydrody-
namic equations are investigated to the vicinity of the isotropic micellar to lamellar phase transition. To
derive the hydrodynamic equations we make use of symmetry arguments and irreversible thermody-
namics. Besides the usual order parameters to describe the lamellar phase we also keep the concentration
of the surfactant molecules which are aggregated in micelles as a variable in order to describe the correct
macroscopic behavior of the lamellar phase. The macroscopic dynamic equations are presented on both
sides of the transition. We discuss possible experiment were our theory can be tested.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Lyotropic liquid crystals (LLC) are mixtures of amphiphilic mol-
ecules and solvents at given temperature and relative concentra-
tions. An important feature of LLC is the self-assembly of the
amphiphilic molecules as supermolecular structures. Lyotropic
mesophases are very similar to the mesophases that exist in ther-
motropic liquid crystals (TLC) in terms of the orientational and
translational ordering. Smectic-A (SmA) phase in TLC is composed
of parallel liquid layers. In general the lamellar phase is a SmA li-
quid crystal in which the layers are composed of surfactants mol-
ecules and the gap between them is occupied by water. This phase
is designated as LD. Thus the LD phase exhibits the positional order-
ing of micelles into planes arranged periodically along the nematic
director n̂. In many systems, such as lyotropic liquid crystals [1–4]
and block copolymers [5–10] transition is observed from a uniform
isotropic to a lamellar phase upon lowering the temperature. Alex-
andridis et al. [9] studied the phase behavior and structure of bin-
ary amphiphilic polymer-water systems as a function of polymer
concentration and temperature for three poly (ethylene oxide)-b-
poly (propylene oxide)- b-poly (ethylene oxide) (PEO-PPO-PEO)
copolymers of different composition by using 2H-NMR and
small-angle X-ray scattering. They observed three different cubic,
hexagonal, and lamellar LLC phases. The characteristic lattice
parameter of the lamellar structure decreased with increasing
polymer content; the bilayers swell less as water is removed. Wan-
ka et al. [10] also studied the phase diagrams and aggregation

behavior of triblock copolymers in aqueous solutions. They also
confirmed three different cubic, hexagonal, and lamellar LLC
phases. Experimental results [1–4] and theoretical predictions
[11–14] support the evidence of the presence of a transition from
the isotropic micellar (I) to a lamellar phase transition in LLC sys-
tem. In experimental studies [1–4], the binary mixtures of cesium
perfluoro-octanoate (CsPFO)-water/heavy water (H2O/D2O) and
APFO/D2O systems were found to produce the I, ND and LD phases
and the I-LD transition via a I - ND - LD triple point. The I-LD phase
transition is quite analogous to the isotropic-smectic-A (I-SmA)
phase transition in TLC. Experimentally I-LD phase transition is
found to be strongly first order. In a recent paper [14], we theoret-
ically studied the key features of the I-LD phase transition in detail.
It was pointed out that the same pretransitional behavior occurs
for the I-LD phase transition similar to the I-SmA transition in
TLC. The purpose of the present paper is to study the hydrody-
namic properties near the I-LD phase transition.

Liquid crystalline phases have interesting hydrodynamic prop-
erties which is known for over four decades both in TLC [15–23]
and LLC [24–28]. It turns out that the anisotropy of TLC has a num-
ber of interesting implications for their hydrodynamic behavior.
The macroscopic dynamics deal with the dynamics of the devia-
tions of the order parameter modulus from its equilibrium value.
It is valid only near the phase transition. Although the hydrody-
namic and macroscopic dynamics study in TLC have been a topic
of active theoretical and experimental studies over the four
decades, reports of the macroscopic dynamics study in LLC are
comparatively scarce. It is the goal of this paper to study the
macroscopic dynamics behavior near the I-LD phase transition. Bro-
chard and de Gennes [24] extensively studied the hydrodynamic
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properties of fluid lamellar phases of lipid/water system. The
observations of the collective modes in the lamellar phases shows
details of the interactions between layers and also on specific dis-
sipative process in the lipid region. Bary-Soroker and Diamant [28]
studied the relaxation modes of an interface between a lyotropic
lamellar phase and a gas or a simple liquid. They found that sur-
faces of lyotropic lamellar phases can relax via a much slower,
over- damped diffusive mode over a wide range of wavelengths.

To the best of the author knowledge there is so far no theoret-
ical work on the macroscopic dynamics study near the I-LD phase
transition. Thus it is interesting to study the macroscopic dynamics
behavior near the I-LD phase transition. In the present paper we
study the macroscopic dynamic behavior near I-LD phase transi-
tion. We adopt the general framework developed by us in our pre-
vious work [29] for the isotropic to Smectic-A (I-SmA) phase
transition in TLC and for dynamics of binary liquid crystal mixtures
[23,30,31]. We identify different hydrodynamic and macroscopic
dynamic variables near the I-LD phase transition.

2. Derivation of macroscopic equations

2.1. Macroscopic equations in the LD phase below the I-LD transition

We start by describing the hydrodynamic and macroscopic vari-
ables in the LD phase that describes the macroscopic state of the
system. The hydrodynamic variables for the lamellar phase are
density q, entropy density r, density of linear momentum g, dis-
placement uz of the smectic layers along the z axis associated with
the density wave parallel to the layer normal and / which mea-
sures the concentration of those surfactant molecules which are
aggregated in micelles. Here / ¼ ðx� xlÞ, where xl is the molar frac-
tion of the free surfactant molecules and x is the total molar frac-
tion of the surfactant. Here x ¼ nsr/ðnsr þ nsÞ, where nsr and ns

denote the numbers of surfactant and solvent molecules, respec-
tively. The LD phase has the same symmetries as the smectic-A
(SmA) phase in TLC. So the macroscopic variables for the LD phase
are the modulus S of the nematic order parameter
Q ij ¼ ðS=2Þð3ninj � dijÞ, the real modulus of the smectic order
parameter W similar to SmA phase in TLC. We also assume that
the nematic director n̂ and the smectic layer normal k̂ are parallel
to each other. Here we will focus only on the linearized macro-
scopic equations. To describe the static properties of the LD phase,
we find the Gibbs relation in terms of the hydrodynamics and mac-
roscopic variables

de ¼ ldqþ Tdrþ v igi þWidriuz þ Nd/þ PdSþMdW ð2:1Þ

where e is the energy density. In Eq. (2.1) the thermodynamic quan-
tities chemical potential (l), temperature (T), the velocity field v i,
the field Wi, the concentration field N and the order parameter fields
S and W are defined as partial derivatives of the thermodynamic po-
tential with respect to the appropriate variables. N is a conjugate
quantity of /. So N is analogous to relative chemical potential l/.
Equation (2.1) gives a relation between the changes in the macro-
scopic variables and the entropy density r.

Now the generalized energy (F ¼ F0 þ
R

fds) of the lamellar
phase can be written as

F ¼ F0 þ
Z
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"
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where F0 ¼
R

f0ds is generalized energy of the isotropic liquids with

f0 ¼
R

1
2 AqqðdqÞ2 þ AqrðdqÞðdrÞ þ 1

2 ArrðdrÞ2 þ 1
2q g2

h i
, where

Aqq ¼ ð@l=@qÞr;Arr ¼ ð@T=@rÞq, and Aqr ¼ ð@T=@qÞr. Here B is the
compressional modulus of the smectic layers and the layer bending
modulus K is close in magnitude to the splay modulus in nematic.
The transverse Laplacian is defined as r2

? ¼ ðdij � ninjÞrirj.
Now the conjugated variables in terms of the hydrodynamic

and macroscopic variables are expressed as

P ¼ dF
dS
¼ aSþ bqdqþ brdrþ hW þ kd/þ c1rzuz; ð2:3Þ

M ¼ dF
dW
¼ aW þ cqdqþ crdrþ hSþmd/þ dWrzuz; ð2:4Þ

Wi ¼
dF

dðriuzÞ
¼ ðBrzuþ dqdqþ drdrþ dW W þ c1Sþ c2d/Þdiz

� Kðdij � ninjÞrjr2
?uz; ð2:5Þ

N ¼ dF
dðd/Þ ¼ p1d/þ f qdqþ f rdrþ kSþmW þ c2rzuz; ð2:6Þ

dT ¼ dF
dr
¼ Arrdrþ Aqrdqþ brSþ crW þ f rd/þ drrzuz; ð2:7Þ

dl ¼ dF
dq
¼ Aqqdqþ Aqrdrþ bqSþ cqW þ f qd/þ dqrzuz; ð2:8Þ

v i ¼
1
q

gi: ð2:9Þ

To determine the dynamics of the variables we have two class of
variables (1) the variables that contains conserved quantities and
(2) the variables that contains nonconserved quantities.

Then the resulting dynamic equations for the conserved fields
are

@q
@t
þrigi ¼ 0; ð2:10Þ

@gi

@t
þrjrij ¼ 0: ð2:11Þ

@/
@t
þ v iri/þrij

/
i ¼ 0 ð2:12Þ

where rij is the stress tensor and j/i is the concentration current.
There is also another mass conservation equation for the LD

phase appears because of the surfactant migration in the layers
plane relative to water i.e. of slip. As Brochard and de Gennes
[24] pointed out that there is a constraint relation between /; @u

@z
and the relative variation of the surface per polar head (d) i.e.
/ ¼ @u

@z þ d. Then the mass conservation equation due to slipping
is given by Brochard and de Gennes [24]

@/
@t
þriv iL ¼ 0; ð2:13Þ

where vL is velocity of the lipid fraction and @/
@t ¼

@ @u
@zð Þ
@t þ @d

@t.
We will now write down the boundary conditions for Eqs.

(2.10) and (2.11). At the interface, the differential form of dynamic
Eqs. (2.10) and (2.11) are not valid anymore. Adopting the proce-
dure as outlined by Bary-Soroker et al. [28,32], we consider an
elementary box in the interface. Then at the interface Eq. (2.10)
can be written as

d
dt

Z
V
qdV ¼ �

Z
S

g � n̂dS: ð2:14Þ
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