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a b s t r a c t

This study presents the new relaxation function describing the non-Debye relaxation phenomena. The
relaxation function is based on a new theoretical model of the relaxation polarization. The non-Debye
relaxation is explained with the model of nonlinear damped oscillator. It is shown that the relaxation
function describes the relaxation spectra of the Davidson-Cole and Havriliak–Negami types as well as
spectra with the left-skewed loss peak.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that broadband dielectric spectroscopy is a
powerful tool for investigating a variety of dielectric processes
both for electrical and non-electrical application. It provides the
unique information pertaining to the structure, chemical composi-
tion and molecular processes in matter. In recent years, numerous
experimental and theoretical studies have focused on understand-
ing of the non-exponential dynamics in more detail.

At present a number of empirical formulas are used for the
description of relaxation dielectric spectra. One of as of the best
known is the Debye equation:

eðxÞ ¼ es þ
es � e1
1þ isx

ð1Þ

where e(x) is the complex permittivity, s is the time constant or the
relaxation time, e1 and es are respectively the high and low fre-
quency permittivity limits, x is the cyclic frequency of an external
electric field change, i is the complex unit [1–4]. Despite the
extremely wide application of Eq. (1) in various branches of science
and engineering, it does not explain the nature of relaxation
polarization.

The inverse Fourier transform of the Debye formula gives the
time-dependent exponential relaxation function:

PðtÞ ¼ P0e�
t
s; ð2Þ

here P(t) is the polarization, P0 is the polarization value at the
moment t = 0.

Wide-ranging experimental information leads to the conclusion
that pure Debye behavior is hardly ever found in nature. Eq. (1)

describes the behavior of an assembly of non-interacting ideal di-
poles that have the same time constant. In practice dispersion oc-
curs over a wider frequency range. The Debye relaxation is
generally limited to water in liquid state and weak solutions of po-
lar liquids in non-polar solvents [1–3].

Cole and Cole (CC) suggested the following empirical equation

eðxÞ ¼ es þ
es � e1

1þ ðisxÞ1�a ð3Þ

where a is the constant (1 P a > 0) depending on a certain type of
material, temperature and pressure [5]. Eq. (3) describes the dielec-
tric spectra of many liquids and some polymers exhibiting symmet-
rical loss peak and wider dispersion area in comparison with the
Debye formula [6].

In work [7] Davidson and Cole (DC) suggested the following
formula for types of glass and glass-like substances having the
asymmetric loss peak.

eðxÞ ¼ es þ
es � e1

ð1þ isxÞ1�b
ð4Þ

here b is the constant (1 > b P 0) depending on material properties,
temperature and pressure. The real and imaginary components of
functions (1), (3), and (4) are plotted in Fig. 1.

Some polymers have CC-type spectra at low frequencies and
DC-type spectra at high frequencies. In work [8] Havriliak and
Negami (HN) proposed the following function:

eðxÞ ¼ es þ
es � e1

ð1þ ðisxÞ1�aÞ
1�b

: ð5Þ

when a = b = 0 the Debye function is obtained. Eqs. (4) and (5)
describe the spectra exhibiting the right skewed loss peak (Fig. 1).

The inverse Fourier transform of Eqs. (3)–(5) into the time
domain are not analytic functions. For the polarization time
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dependence description the Kohlrausch–Williams–Watts (KWW)
empirical relaxation function is used.

PðtÞ ¼ P0e�ð
t
sÞ

v
ð6Þ

where c is the constant (1 P c > 0) [9]. The KWW is usually called
the stretched exponential. It is easy to see that function (6) is a
modified version of relaxation function (2). The digital Fourier
transformation of function (6) into the frequency domain allows
to describe the spectra of DC and HN type.

Obviously, functions (3)–(5) are the modified Debye equation.
An experiment demonstrates that very few materials completely
agree with Eqs. (3)–(5). In fact, slight (or not so slight) deviations
from distributions (3)–(5) have been commonly observed for the
majority of materials. Moreover, there are quite a few materials
exhibiting the left-skewed loss peak; none of a known formulas,
including (1)–(6), describes the spectra of such type.

None of the above mentioned functions explain the nature of
non-Debye relaxation. There are a number of models explaining
the non-Debye relaxation processes, the hopping model, the distri-
bution of relaxation times, etc. [1–3], but none of them give an ana-
lytical relaxation function. The coupling model, suggested by Ngai
et al. work [10] and citations, treated the non-Debye process as the
non-linear vibrations of arrays of phase-coupled oscillators. The
model is in good agreement with experimental data, a close fit
for the calculated relaxation function to the KWW function. This
one, however, does not give a relaxation function in analytical
form.

2. Physical model of the relaxation polarization

2.1. Debye relaxation

It should be noted that in accordance with the Debye theory a
water molecule rotates freely in the viscous continuous medium
[4]. The microscopic mechanism of interaction between the given
molecule and neighboring molecules was not considered. The aver-
age viscosity factor was used to describe the interaction. Hence we
can conclude that the Debye relaxation model is macroscopic, since
it considers an average molecule rotating in a viscous continuous
medium with an average linear friction.

To find a simple relaxation function, we have to take into ac-
count the fact that a complicated microscopic model usually either
gives a complicated solution or does not give an analytical solution
at all.

In accordance with the definition, the dielectric polarization is
relative displacement the charged particles or the orientation of di-
poles towards the direction of external electric field [1–3]. In the

alternating field the particle changes the move direction towards
the direction of external field, i.e. the particle vibrates. It is also true
for the relaxation polarization. Hence, the linear oscillator model
[11] may be applied for the relaxation polarization description.

Thus, following the aforementioned arguments, consider an
average molecule in a viscous medium. Obviously, the interaction
between that molecule and its neighbors is due to Coulombic inter-
action, i.e. the molecule is located in the Coulombic potential well.
Hence, the rotating molecule not only loses energy due to friction
but it is also affected by the Coulombic restoring force. Therefore,
consider an average vibrating particle in the potential well. Follow-
ing Debye, introduce the average friction coefficient to take into ac-
count the energy loss. For the dipole orientation description the
angle variable is used, for the particle movement the linear coordi-
nate x is used. In both cases the linear oscillator equation has the
same form. Below the coordinate x will be used.

Consider the linear oscillator equation [11]

d2x

dt2 þ 2d
dx
dt
þx2

0x ¼ FðtÞ
m

: ð7Þ

here x is the oscillator coordinate, m is the oscillator mass, x0 is the
own frequency, d is the damping coefficient, F(t) = q�E(t) is the exter-
nal driving force, q is the elementary particle charge, and E(t) is the
external field strength. The own frequency is related to the spring
constant k according to x2

0 ¼ k=m. The first term in Eq. (7) is respon-
sible for the inertia force, the second for the damping force, and the
third for the elastic restoring force.

For relaxation processes the inertia force is of little importance
due to high friction. If the damping force is greater than the inertia
force, then the first term in Eq. (7) may be neglected. In this case
Eq. (7) becomes degenerated [11]:

dx
dt
þ 1

s
x ¼ FðtÞ

mx2
0

ð8Þ

where s = 2d/x0
2 is the time constant. The degeneracy condition is

d P 3x0
2 [12]. The general solution of Eq. (7) is:

xðtÞ ¼ x0e�
t
s: ð9Þ

Further, it is easy to obtain the spectral function for the damped
linear oscillator using the Fourier transform:

SðxÞ ¼ x0 � s
1þ i �x � s : ð10Þ

Thus, taking into account the relationship p = q � x between
polarization p and the charged particle displacement x, we can con-
clude that the spectral Debye function and relaxation function (2)
are the consequences of damped linear oscillator Eq. (8). In other
words, the Debye type polarization of a dielectric is damped linear
vibrations of charged particles.

2.2. Non-Debye relaxation

Since very few materials completely agree with the Debye
equation, it was supposed in work [13] that non-Debye relaxation
may be described as the damped nonlinear vibrations of an average
charged particle in a viscous medium.

Let us consider the special case of the damped oscillator with
nonlinear spring force

f ðxÞ ¼ k � xþ k1 � xn: ð11Þ

Here k � x is the linear spring force, k1 � xn is the nonlinear term, k,
and k1 are the spring constants, and n is the numerical parameter

Fig. 1. The real and imaginary parts of dielectric constant vs. logarithmic frequency
for Eqs. (1), (3), and (4).
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