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a b s t r a c t

Statistical thermodynamics of protein solutions is often studied in terms of simple, microscopic models of
particles interacting via pairwise potentials. Such modelling can reproduce the short range structure of
protein solutions at equilibrium and predict thermodynamics instabilities of these systems. We introduce
a square well model of effective protein–protein interaction that embeds the solvent’s action. We modify
an existing model [45] by considering a well depth having an explicit dependence on temperature, i.e. an
explicit free energy character, thus encompassing the statistically relevant configurations of solvent mol-
ecules around proteins. We choose protein solutions exhibiting demixing upon temperature decrease
(lysozyme, enthalpy driven) and upon temperature increase (haemoglobin, entropy driven). We obtain
satisfactory fits of spinodal curves for both the two proteins without adding any mean field term, thus
extending the validity of the original model. Our results underline the solvent role in modulating or
stretching the interaction potential.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

An aqueous solution of a single protein species is a highly com-
plex system. The basis of such complexity is the large number of
microscopic configurations thermally available to each solute (pro-
tein) molecule alone and the even larger number of microscopic
configurations available to liquid water alone [1]. When solutes
are in solution, configurations of solute and solvent are modified
by interactions among solutes and liquid water with corresponding
entropy and enthalpy costs (or gains) of those modifications. These
costs are highly nonadditive [1] and, in consequence, the observed
effects can be exquisitely specific. On the grounds of such complex-
ities, it is not a surprise if entropy plays a crucial role in the inter-
action of proteins with other proteins and solutes. This
consideration makes the free energy of the entire system the
appropriate quantity describing the thermodynamic behaviour of
protein solutions, and not the simple energy landscape coming
from energies of intra- and inter-protein interactions microscopi-
cally described by local pair potentials.

Studying statistical thermodynamics of protein solutions is a
necessary task for understanding the macroscopic phenomena
occurring in them, such as phase separation and formation of crys-
tals [2–4] and aggregates. Besides, it is of high relevance for under-
standing mechanisms of protein activity [5]. These studies are also

very important for nanophysics, clinical sciences, biotechnologies
and food technologies, as well as for fundamental physics [6–18].
In addition, an accurate microscopic description of protein–protein
and protein–solvent interactions can also be used to predict micro-
scopic structural details of protein solutions.

The theoretical description of the thermodynamic and struc-
tural properties of protein solutions requires the accurate knowl-
edge of the protein–protein interactions combined with
appropriate statistical mechanical methods. This is a formidable
challenge because of the complexity of the interaction themselves.
As an example of such complexity we only mention the relevance
of the solvent mediated protein–protein interactions included in
the so called hydrophobic effect [19]. Some success has been
achieved with the use of simple, short-ranged, potential models
in combination with statistical mechanics theories, an approach
that has proved to be useful to reproduce some of the properties
of colloidal suspensions. Phase transitions, as well as other macro-
scopic phenomena, are on the contrary intrinsic long range effects
of the microscopic interactions [19], and thus short-ranged interac-
tions are hardly appropriate to describe the experimental data.
Nevertheless, it is possible to describe correctly liquid–liquid phase
transition by using a short range interaction potential and the
modified Mean Spherical Approximation (mMSA)1 [20]. Often, sim-
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1 This feature is explained by noticing that the use of mMSA brings a mean field
character to the model and thus accounts for averaged long range effects; conversely,
short range properties of those solution are not correctly predicted by using mMSA.
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ple potential models are combined with simple theoretical approxi-
mations and it is very difficult to trace back the origin of the inaccu-
racies either to the chosen description of interactions or to the
approximations in the method. To overcome this drawback, some-
times an extra long range term is added to a simple model with
short-ranged interactions in order to reproduce phase transitions
in protein solutions [21–23]. This long range term includes adjust-
able enthalpy and entropy parameters which, in the cited works,
cannot be considered as being perturbative. A different though suc-
cessful route used to describe liquid–liquid phase separation in pro-
tein solutions is the use of mean field models, such as van der Waals
or Flory–Huggins ones, with an explicit entropic term in the interac-
tion energy. These models are capable of predicting thermodynamic
instabilities of protein solutions exhibiting demixing either upon
cooling [3,24] or upon heating [25,26] (inverse temperature or en-
tropy driven phase transitions). Other recent efforts [27–29] have
been directed towards the development of more sophisticated po-
tential models with anisotropic interactions, eventually in combina-
tion with more complex theoretical approaches. However, for
practical applications it is desirable to use simpler models capable
of capturing the essential features of phase stability of protein
solutions.

In this paper we present an analytical theoretically-based ap-
proach for the liquid–liquid phase transition of protein solutions,
based on a simple model of protein–protein interactions with sol-
ute–solvent interactions incorporated in an approximate way. We
will show that our model is capable of predicting the thermody-
namic instabilities of protein solutions for which the demixing
transition is reached upon cooling as well as upon heating, in con-
trast with other simple models which fail in the latter situation.

2. The model

The first step, in order to apply statistical mechanics theories to
a specific fluid, is to choose an appropriate potential model. For
globular proteins in solution, experimental evidence reveal that
the protein–protein interactions consists of a strongly repulsive
core, plus a short-ranged attraction and longer-ranged interac-
tions. The simplest potential model including the first two contri-
butions is the sticky hard-sphere (SHS) potential

uðrÞ=kBT ¼
1; r < r
ln 12s k� 1ð Þ=k½ �; r < r < kr
0; r > kr

8><
>: ; ð1Þ

where s, the sitickiness parameter, is a dimensionless measure of
the temperature, and k� 1 is infinitesimally small. This potential
model has been successfully used [30] to reproduce the experimen-
tal data for the osmotic pressure of aqueous solutions of lysozyme
using Baxter [31] analytical solution, based on integral equation
theory, to obtain the equation of state of the system.

However, the SHS model was found to be unable of fitting the
spinodal line of lysozyme solutions [23,22] because of the presence
of long-range interactions not accounted for by such simple model.
A way to improve the results is based on a mean field perturbation
theory, obtained by adding to the isothermal compressibility of the
reference SHS fluid a van der Waals mean-field term, in the form
[23,22]:

1
jT
¼ 1

jð0ÞT

� 2ag2 ð2Þ

where jT and jð0ÞT are the isothermal compressibilities of the actual
and reference fluids, respectively, g is the volume fraction of the
protein in the solution, and a is the perturbation energy in units
of volume fraction, which may be considered as consisting of ener-
getic (or enthalpic) and entropic contributions [32], namely:

a ¼ h� Ts ð3Þ

Eq. (2) with a given by Eq. (3) and jð0ÞT obtained from the Baxter [31]
solution for SHS, constitute the generalized van der Waals model
used by Manno et al. [23,22] to fit the experimental data for the
spinodal line of lysozyme.

Alternatively, the square-well (SW) potential

uðrÞ ¼
þ1; r < r
�e; r < r < kr
0; r > kr

8><
>: ð4Þ

where r is the diameter of the particles, e the potential depth, and
ðk� 1Þr the potential width, can be used to model protein–protein
interactions in protein solutions. To this end, the potential depth e is
set to be dependent upon the salt type and concentration in the
solution [33] and even temperature-dependent through them
[34]. According to these authors the dependence of the potential
depth on temperature is due to the entropic contribution arising
from the specific effect of a particular salt on the structure and
dynamics of water molecules around the protein surface. This
entropic effect may be accounted for by replacing the potential
depth e with a free energy parameter e� Ts.

Concerning the theory, mean-field perturbation theories are
known not to be accurate for predicting phase transitions near
the critical point. More advanced perturbation theories, like the
second-order Barker–Henderson perturbation theory [35] or the
first-order mean spherical approximation [36], are not accurate
in the critical region of the SW fluid with variable width. Better
accuracy is provided by some recently proposed perturbation the-
ories [37–39], based on the expansion of the free energy in terms of
a parameter coupling the reference and perturbation potentials,
but this requires the use of an integral equation theory which must
be solved numerically and this makes the procedure impractical in
our context. Good performance may be achieved by combining
perturbation theory with computer simulations. The perturbation
expansion of the free energy F in terms of the inverse of the tem-
perature has the form:

F
NkBT

¼
X1
n¼0

Fn

NkBT
e

kBT

� �n

ð5Þ

The zeroth-order term F0 is the contribution of the reference
fluid, the hard-sphere (HS) fluid in the case of the SW potential,
which can be obtained from integration of any suitable equation
of state, like the very accurate Carnahan–Starling (CS) equation
[40]. Several of the higher-order terms can be obtained from com-
puter simulations [41,42]. The first- and second-order terms have
the form:

F1

NkBT
¼ 1

N

X
i

Nih i0u�1 rið Þ ð6Þ

F2

NkBT
¼ �1

2
1
N

X
i;j

NiNj
� �

0 � Nih i0 Nj
� �

0

� �
u�1 rið Þu�1 rj

� 	
ð7Þ

Higher-order terms can be calculated in a similar way. In the
previous formulas, N is the number of particles in the simulation,
Ni is the number of intermolecular distances in the range
ri � Dr=2, with Dr � r and i ¼ 0; 1; . . . ; angular brackets mean
ensemble averages, subscript 0 indicates that the averages are per-
formed in the reference system, and u�1ðrÞ ¼ u1ðrÞ=e, where u1ðrÞ is
the perturbation part of the potential. For the SW fluid the refer-
ence system is the HS fluid, as said before, and the perturbation po-
tential is hence:
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