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a b s t r a c t

We give an exposition of an approach toward excitons in semiconductor carbon nanotubes allowing for
separation of the short-range and long-range parts of the electron–hole Coulomb interaction. The
approach is applied to account for the exciton fine structure and excitonic effects in optical absorption.
It is shown that the energy positions of the Eii optical transitions with i > 2 are strongly affected by the
short-range part of the electron–hole Coulomb interaction.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Excitonic effects in semiconductor single-wall carbon nanotubes
(CNTs) are revealed in chirality and diameter dependences of optical
transition energies observed in Raman and photoluminescence
excitation (PLE) experiments [1–3] and in exciton fine-structure
splittings measured using magneto-PL spectroscopy [4–7]. They
are governed by both the long-range and the short-range parts of
the electron–hole Coulomb interaction. The long-range part is
responsible for the exciton formation out of an electron and a hole
from given subbands (and valleys) while the short-range part ac-
counts for the exciton fine structure stemming from inter-subband
(inter-valley) coupling. A difficulty arises from the fact that at short
distances the Coulomb interaction is singular. The standard way to
avoid this singularity while accounting for the short-range part of
the electron–hole interaction within the tight-binding method is
to replace the Coulomb potential between the p-electrons of CNTs
by the phenomenological Ohno potential of the form

VðrÞ ¼ Uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrU=e2Þ2 þ 1

q ; ð1Þ

where U is the energy cost to place two electrons on a single site.
This method results in a reasonable approximation [1,8–12] but does
not allow one to separate the short-range and the long-range parts
of the interaction potential and obscures the underlying physics.

Recently we have proposed an alternative treatment [13] where
the Coulomb interaction is approached from the momentum-space
perspective. The matrix elements of the Coulomb potential are

expanded into a series over CNTs one-dimensional (1D) reciprocal
lattice vectors, gn ¼ 2pn=jTj, where T is the CNT translational vec-
tor [14]. In this formulation the long-range part of the Coulomb po-
tential is accounted for by the term with n ¼ 0 while the rest of the
expansion corresponds to the short-range part of the Coulomb
interaction.

In this paper we will first formulate two problems in exciton
physics of CNTs for which this treatment appears to be particularly
advantageous. Then we will proceed with formulation of the
approach and give all necessary technical details. Next we will
demonstrate applications of our treatment to the problems formu-
lated earlier.

2. Fine structure of exciton levels

We define the two perpendicular axes K1 and K2 in the recipro-
cal space of graphene as being parallel, respectively, to the circum-
ferential and translational directions of a given CNT with chiral
indices ð~n; ~mÞ [14]. Then the single-particle states of the CNT can
be characterized by a pair of coordinates ðl=R; qÞ, as shown in
Fig. 1. Here l is the integer subband index assuming values from
0 to N � 1, N ¼ 2ð~n2 þ ~m2 þ ~n ~mÞ=dR is the number of hexagons
within the CNT unit cell, dR is the greatest common divisor of
2~nþ ~m and 2 ~mþ ~n, R is the CNT radius, and q is the 1D wave vector
from the CNT Brillouin zone ½�p=jTj;p=jTjÞ. For semiconductor CNTs
the positions of the relevant K and K 0 points have the ðK1;K2Þ coor-
dinates of ðN =3R;0Þ and ð2N =3R;0Þ, respectively.

The subbands in the conduction and valence bands closest to the
Fermi level have the l-indices determined by integers nearest to
N =3 and 2N =3. Due to valley degeneracy in graphene, the single-
particle states in these subbands are degenerate, as shown in Fig. 2.

Light polarized parallel to the CNT axis causes optical transitions
between a subband in the valence band and a subband in the con-
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duction band having the same indices l [15,16]. Exciton states with
both the electron and the hole from the same valley are known as
A-excitons [12]. The valley degeneracy leads to existence of the
two degenerate A-exciton states, originating, respectively from
the K and K 0 valleys of graphene. We will denote them as jKKi and
jK 0K 0i. As one can see from Fig. 1, the distance separating the K
and K 0 points (or corresponding subbands) in the momentum space
is larger than both the inter-subband separation and the size of the
1D Brillouin zone. Therefore, the coupling between the jKKi and
K 0K 0i excitons is due to the short-range interaction.

In the limit where electron–hole coupling is neglected, exciton
states are also spin degenerate. This degeneracy is lifted by the
electron–hole exchange interaction which splits a spin degenerate
exciton state into a spin singlet and a spin triplet. As the spin–orbit
interaction in graphene and CNTs is negligible, the spin degree of
freedom of electrons is decoupled from the incident light. As a re-
sult, only the spin singlet exciton state is optically active [11].

Coupling between the exciton states jKKi, jK 0K 0i can be written
in the form

bV ¼ D Dþ D

Dþ D D

� �
; ð2Þ

where all the matrix elements are assumed to be real and D is the
exchange matrix element vanishing for the spin triplet state and
different from zero for the spin singlet. The eigenvalues and eigen-
states of this matrix are

Eþ ¼ 2Dþ D; jKKi þ jK 0K 0i;
E� ¼ �D; jKKi � jK 0K 0i:

The eigenstates are bonding and anti-bonding combinations of the
states jKKi and jK 0K 0i and we will call the corresponding excitons
Aþ and A�, respectively. Clearly, out of these two states, only the
bonding state, Aþ is optically active. One can also see from this anal-
ysis that spin-singlet and spin-triplet states of the anti-bonding
exciton, A�, are degenerate.

As the bonding state, Aþ, is optically active for light polarized
parallel to the CNT axis, z, its wave function transforms as the
z-component of a vector under symmetry operations of the CNT.
In group-theoretical notations the corresponding irreducible repre-
sentation is called A2 [12]. This representation is odd with respect
to the C2 rotation around the axis perpendicular to z. The anti-
bonding state, A�, transforms according to the scalar representa-
tion, A1.

The splitting between the dark A� and the bright Aþ spin-singlet
exciton states can be measured experimentally with the help of the
magneto-PL spectroscopy [4,6,7]. It is therefore important to be
able to calculate the energies E� and to understand their depen-
dence on CNT chiralities.

3. Energy positions of E33 and E44 optical transitions

Considerable efforts have been made to document chirality and
diameter dependences for energies of up to four optical transitions
in semiconductor single-wall CNTs [1–3,17,18]. The transition
energies for parallel polarization with respect to the CNT axis are
denoted by Eii (i ¼ 1;2;3;4; . . .) for a transition between ith sub-
band in the valence band and ith subband in the conduction band,
counted from the Fermi energy. Originally Eii referred to the ener-
gies of van Hove singularities in the joint density of states [17,18].
This notation continues to be in use after the importance of exci-
tonic and many body effects for optical properties of CNTs has been
realized [8–12,19–21].

It has been shown [21] that partial cancellation of the electron
self-energy and the exciton binding energy results in relatively
small many body modifications of the transition energies Eii for
the first two optical transitions (i ¼ 1;2) [1,18]. However, the situ-
ation changes drastically for higher optical transitions (i ¼ 3;4; . . .)
[1–3]. Even though calculations within an extended tight binding
method accounting for many body effects [1] are in good agree-
ment with experimental data for E33 and E44 transition energies
[2,3], there is no clear physical understanding what makes the
higher lying exciton energies so different as compared to their low-
er lying counterparts.

In this section we will analyze optical absorption of semicon-
ductor CNTs neglecting electron–hole coupling and try to under-
stand why inclusion of this coupling might affect the lower and
higher lying optical transitions in a different manner.

The number of states in a given energy subband of a CNT is
equal to the number of CNT unit cells in a sample. This provides
a convenient way to use not too long CNTs containing, say, 20 unit
cells to illustrate partial contributions of various subbands to opti-
cal absorption in the case when no many body effects are taken
into account. In this case absorption cross section can be found
using Fermi’s golden rule

rabsðxÞ /
X
l;q

jhc;l; qjvzjv ;l; qij2

Ecðl; qÞ � Evðl; qÞ
d �hx� Ecðl; qÞ þ Evðl; qÞð Þ; ð3Þ

where hc;l; qjvzjv ;l; qi is the velocity interband matrix element for
the parallel polarization of light [15,16] and Esðl; qÞ describes en-
ergy dispersion in the lth subband of the s-band (s ¼ c;v). The qua-
si-descrete character of the energy spectrum due to the finite length
of the CNT allows one to distinguish different d-functional contribu-
tions to absorption spectrum neglecting spectral line broadening.
The partial contributions to the optical absorption spectrum due
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Fig. 1. Coordinate axes in the reciprocal space of graphene and 1D Brillouin zones
corresponding to various subbands of (4,2) CNT.
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Fig. 2. Subbands closest to the Fermi level of ð4;2Þ CNT originating from the K and
K 0 valleys of graphene. For this CNT l ¼ 9, l0 ¼ 19.
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