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a b s t r a c t

We investigate theoretical models for the lateral width of the electron momentum distribution after
recollision-free strong-field ionization of atoms. We review the derivation of the tunneling formula
and demonstrate that the pre-exponential factor in the saddle-point approximation cannot be neglected
if quantitative results are desired. We calculate the widths for hydrogen as well as argon and neon atoms.
We compare to results from the time-dependent Schrödinger equation, and to the experimental results
from [L. Arissian, C. Smeenk, F. Turner, C. Trallero, A.V. Sokolov, D.M. Villeneuve, A. Staudte, P.B. Corkum,
Phys. Rev. Lett. 105 (2010) 133002].
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The availability of light sources capable of producing ultra-short
pulses in the femtosecond [1] and even the attosecond regime [2]
has led to numerous new applications, such as generation of coher-
ent soft X-rays [3], attosecond imaging of molecular electronic
wave packets [4], real-time observation of atomic-scale electron
dynamics [5,6], and probing of molecular dynamics with sub-
femtosecond resolution [7]. In attosecond science [8], angular
streaking with elliptically or circularly polarized pulses may be-
come an important tool to measure the carrier-envelope-phase
(CEP) of few-cycle laser pulses [9]. Angular streaking has already
been used to put a small upper limit on the tunneling delay time
[10,11]. Furthermore, ionization of atoms by circularly polarized
light has brought new insight into tunneling ionization via mea-
surement of the lateral momentum distribution, i.e. the distribu-
tion in the direction perpendicular to the laser field [12]. While
linear polarization leads to strong Coulomb effects in the lateral
distributions [13,14], for circular polarization, the width of the lat-
eral distribution is approximately predicted by a simple tunneling
formula [15,16]. It can therefore be used to improve [17] measure-
ments of peak intensities via momentum distributions [18]. It has
been demonstrated theoretically that the lateral width corre-
sponds to the instantaneous electric field at the moment of ioniza-
tion, even at high field amplitudes for which substantial depletion
takes place [19]. This enables precise measurements of the CEP or
the peak field amplitudes, if the dependence of the width on the
field is known accurately enough from theory. However, in the
experiment by Arissian et al. [12], a difference of about 15% be-

tween the measured widths and the predictions of the tunneling
formula has been found.

In this paper, we revisit the tunneling formula, and we find rea-
sons for its deficiencies. We re-derive the expression with the cor-
rect prefactor by applying the saddle-point approximation to the
strong field approximation (SFA). We demonstrate that it is actu-
ally capable of describing the lateral width very accurately. We
use atomic units throughout this paper.

The previously used tunneling formula predicts – up to a non-
constant prefactor – a simple Gaussian dependence of the momen-
tum distribution jM(k)j2 on the lateral momentum component k\

[12,15,20],

jMðkÞj2 / P0?ðk?Þ exp �k2
?
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The prefactor P0\(k\) is the momentum distribution of the initial
state, i.e. P0? ¼

R
dkzj~w0ðk?;0; kzÞj2 with ~w0ðkx; ky; kzÞ being the ini-

tial-state momentum-space wave function, assumed to be cylindri-
cally symmetric [12,20]. However, even with the non-adiabatic
version of the tunneling formula [21], which replaces the Gaussian
in Eq. (1) by an improved expression, Arissian et al. have found a
difference of about 15% between the measured and the predicted
widths of the lateral momentum distribution. In this work, we find
that the inaccuracy originates mainly from the heuristic prefactor
P0\(k\), which does not arise rigorously from the derivation of
the tunneling formula. We show results for hydrogen, argon, and
neon atoms. We compare to the results obtained independently
from time-dependent Schrödinger equation (TDSE) calculations in
the case of hydrogen, and to the experimental results of Arissian
et al. [12] in the case of argon and neon. For hydrogen, we
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additionally solve the SFA integral numerically in order to assess
the error introduced by the saddle-point approximation. In all cases,
we find that the saddle-point approximation with the correct pre-
factor predicts the lateral width more accurately than the simple
tunneling formula.

In the SFA approach, the momentum distribution of an electron
after strong-field ionization is the modulus squared of the SFA
transition amplitude (Keldysh–Faisal–Reiss amplitude) [22–24],
which reads

MðkÞ ¼ �i
Z tf

t0

dthkþ AðtÞjr � EðtÞjw0ieiSðk;tÞ ð2Þ

in the length gauge. Here, E(t) is the electric field exerted to the
atom by the laser pulse, AðtÞ ¼ �

R tdt0Eðt0Þ , and Sðk; tÞ ¼
R tdt0fIpþ

ðkþ Aðt0ÞÞ2=2g is the action. The interaction of the atom with the
laser field takes place between the times t0 and tf. The final velocity
of an outgoing electron is given by vf = k + A(tf) [25]. The matrix ele-
ment Dðk; tÞ ¼ hkþ AðtÞjr � EðtÞjw0i describes the transition from an
initial bound state w0 to a plane-wave state with kinetic
momentum k + A(t). After this transition, the interaction of the elec-
tron with the ion is neglected. The matrix element can be calculated
easily if the bound-state momentum-space wave function
~w0ðpÞ ¼ ð2pÞ�3=2 R d3rw0ðrÞe�ip�r is known:

hkþ AðtÞjr � EðtÞjw0i ¼ iEðtÞ � rp
~w0ðpÞ

��
p¼kþAðtÞ: ð3Þ

For hydrogen-like atoms with nuclear charge Z, the momentum-
space wave functions are known analytically for any choice of quan-
tum numbers n, l, m [26]:

~wnlmðp;h;/Þ¼
1

ð2pÞ1=2 eim/
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where f ¼ p=c; c ¼ Z=n; Pm
l is the associated Legendre function,

and Clþ1
n�l�1 is the Gegenbauer polynomial.

Since the exponential in Eq. (2) oscillates rapidly with time, use
of the saddle-point approximation is justified. Here, we restrict
ourselves to a linearly polarized half-cycle laser pulse E(t) = ez E0

sin (xt) with A(t) = ezE0cos (xt)/x in order to avoid interference ef-
fects between different saddle points. Agreement of the width from
a linearly polarized half-cycle pulse with that from a circularly
polarized pulse has been demonstrated in TDSE calculations [19].
The saddle-point condition reads

_Sðk; tsÞ ¼ 0; ð5Þ

which, with the definition of S(k, t), immediately implies

ðkþ AðtsÞÞ2 ¼ �2Ip; ð6Þ

and

ts ¼
1
x

arccos �x
E0

kz þ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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: ð7Þ

If we use Eq. (6) together with the hydrogen momentum-space wave
functions, we observe that all matrix elements for hydrogen have a
pole at the saddle point [27,26]. With a generalized saddle-point for-
mula, we can find the following approximation (for a derivation, see
[27], Appendix B),Z 1

�1
dtDðk; tÞeiSðk;tÞ � iq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p

�i€Sðk; tsÞ

s
Cðq=2Þ
2CðqÞ

eDðk; tsÞ

� ð�2i€Sðk; tsÞÞq=2eiSðk;tsÞ; ð8Þ

where q is the order of the pole, and eDðk; tsÞ ¼ limt!tsDðk; tÞðt � tsÞq .
If we additionally change the integration interval in Eq. (2) to
(�1,1), Eq. (8) is an approximation to the integral in Eq. (2).

As a consistency check, we note that taking the adiabatic limit
x ? 0 in the exponential, we obtain

jMðkÞj2 � jPðkÞj2 exp �
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
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where Taylor expansion of the exponent with respect to

k? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x þ k2
y

q
yields the same Gaussian dependence as in the tun-

neling formula, Eq. (1) [21]. However, the prefactor jPðkÞj2 that
stems from Eq. (8) is not simply the initial-state momentum-distri-
bution. Instead, the correct prefactor is

jPðkÞj2 ¼ 4p Cðq=2Þ
2CðqÞ

� �2

2€Sðk; tsÞ
��� ���q�1

jeDðk; tsÞj2; ð10Þ

which leads (without taking the adiabatic limit) to a quantitative
tunneling formula (QTF),

jMðkÞj2 ¼ 4p Cðq=2Þ
2CðqÞ

� �2

2ðkþ AðtsÞÞ � EðtsÞj jq�1

� jeDðk; tsÞj2j expðiSðk; tsÞÞj2: ð11Þ

As the first application of our model, we consider a linearly polar-
ized half-cycle laser pulse of 800 nm wavelength acting on the
hydrogen 1s ground state. The resulting momentum distributions
are centered at vf = � ez E0/x corresponding to k = 0 since
A(tf) = � ez E0/x. We fit Gaussians exp �k2

?=r2
� 	

to the lateral
momentum distributions

Lkz ðk?Þ ¼
Z

dk0?jMðk?; k
0
?; kzÞj2 ð12Þ

at kz = 0 in order to obtain the respective width r. Note that
vf,z = �E0/x corresponds to ionization at the maximum of the elec-
tric field and thus maximizes approximately the width [19]. We cal-
culate the width using the QTF, Eq. (11), and by direct numerical
integration of the SFA integral, Eq. (2). Additionally, we solve the
TDSE

i@twðr; tÞ ¼ �r
2

2
þ r � EðtÞ � 1

r

 !
wðr; tÞ ð13Þ

on a large grid in cylindrical coordinates to have an exact reference.
Here, we exploit the fact that the hydrogen 1s state obeys cylindri-
cal symmetry. We use the split-operator method to propagate the
wave function with a time step of 0.0125 a.u. on a grid comprising
1536 points in lateral direction and 6144 points in field direction,
covering 225 � 900 a.u. in total. We continue to propagate the wave
function w(r, t) after the end of the half-cycle pulse until the wave
packet is sufficiently far from the ion to obtain the final momen-
tum-space wave function ~wðpÞ by Fourier transformation.

In Fig. 1, the resulting lateral widths r are shown for the hydro-
gen atom over a large range of field amplitudes E0. We observe that
the saddle-point approximation is a very accurate approximation
to the SFA integral, which in turn is an accurate approximation
to the exact solution of the problem. Shown are also results of
the non-adiabatic tunneling formula

jMðkÞj2 / P0?ðk?Þj expðiSðk; tsÞÞj2; ð14Þ

where the exponential is the full non-adiabatic expression from the
saddle-point SFA, but the prefactor is kept as in the simple tunnel-
ing formula. The exponential is the same as the one derived in [21].
The widths obtained from Eq. (14) as well as from Eq. (1) deviate
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