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Lattices of antiferromagnetically coupled spins, ruled by Heisenberg Hamiltonians, are intrinsically highly
degenerate systems. The present work tries to estimate the ground state energy of regular bipartite spin
lattices of S=1 sites from a single reference Coupled Cluster expansion starting from a Néel function,
taken as reference. The simultaneous changes of spin momentum on adjacent sites play the role of the
double excitations in molecular electronic problems. Propagation of the spin changes plays the same role
as the triple excitations. The treatment takes care of the deviation of multiple excitation energies from
additivity. Specific difficulties appear for 1D chains, which are not due to a near degeneracy between
the reference and the vectors which directly interact with it but to the complexity of the processes which

lead to the low energy configurations where a consistent reversed-Néel domain is created inside the Néel
starting spin wave. Despite these difficulties a reasonable value of the cohesive energy is obtained.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The Coupled Cluster method was originally proposed by nuclear
physicists [1,2]. The domain where it has received its major success
definitely is the treatment of the electronic correlation in molecu-
lar physics or quantum chemistry [3,4]. In this domain the Coupled
Cluster formalism is considered, at various levels of sophistication,
as a standard method, at least for the study of systems where a rel-
evant single determinant, usually obtained from mean field calcu-
lations, may be constructed and used as reference function for a
single-reference Coupled Cluster (CC) expansion. The limits of the
method are well documented, they concern the situations where
the largest components of the wave functions are developed on
several determinants with equal or nearly equal coefficients. This
situation occurs in the breaking of covalent bonds and in most of
the excited states. The generalization of CC approaches to multire-
ference situations has been the subject of numerous efforts which
we shall not recall here, but where Mukerhjee has taken a major
part [5,6]. The most satisfactory developments (from both the log-
ical criterions and the accuracy) lead to significantly more complex
formalisms.

Surprisingly enough the CC method has not received a similar
audience in the field of Solid State Theory. In principle its applica-
tion to systems which imply covalent bonds, or ionic solids, should
not present any difficulty since the mean-field calculation of the
ground state delivers a relevant single determinantal reference
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and the existence of a gap at the Fermi level avoids any near-
degeneracy problem. In such cases practical calculations of course
require to transform the delocalized Bloch functions into localized
equivalent Wannier functions. Then the calculation of the correla-
tion energy per cell is as easy as that of finite molecular systems,
one should only consider as independent variables the amplitudes
of the double excitations which involve at least one electron (or
occupied orbital) of the reference cell. The summation necessarily
runs only on the MOs of the neighbor cells. The problems arise for
two opposite limits of the electron repulsion versus electron delo-
calization ratio, illustrated by the U/t ratio in the Hubbard model
Hamiltonian. The first one is the metallic case, where a near degen-
eracy between the highest occupied and lowest empty orbital
energies takes place. Double excitations around the Fermi level
take larger and larger amplitudes when the size of the cluster in-
creases, as illustrated in the fascinating work by Chan and cowork-
ers [7] on polyacenes of increasing lengths. Some collective
correlation effects are manifest, at least on the wave function if
not on the correlation energy. The problem of a relevant method
for the calculation of the correlation energy in metallic or quasi-
metallic systems remains an open challenge.

On the other extreme of the U/|t| ratio for half-filled band sys-
tems one finds the magnetic regime. In this limit one may consider
the delocalization as a perturbation and define model spaces
where each site is supposed to be neutral. The mixing between
the neutral and ionic structures will be treated as a perturbation.
This is the foundation of Heisenberg model Hamiltonians, which
simply play with the spin distributions. They appear as effective
Hamiltonians, in the sense of Bloch [8] or des Cloizeaux [9], and
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Quasi-degenerate Perturbation Theory may be used to define their
form and to estimate the amplitude of the effective spin-spin
interactions. The simplest case concerns the systems where each
site brings one electron in one orbital, which constitutes a half-
filled band system. The model space for a several-site problem is
defined by the determinants where each of these orbitals bears
one and only one electron, i.e. the neutral Valence Bond distribu-
tions. The leading second-order treatment produces the bilinear
Heisenberg Hamiltonian. In such a case the spins are spin %2 and
if the ferromagnetic state energy is taken as zero of energy the
resulting effective Hamiltonian is the Heisenberg Hamiltonian

H' = 3 Ji(SiS; - 1/4)

<ij>

where I is the identity operator. To the second order of Perturbation
Theory the expression of the effective exchange integral is

-Jij=2Ki — 45

where Kj; is the direct exchange integral (always positive) and the
second term is the so called kinetic exchange (always negative)
reflecting the impact of the local ionic VB structure, which stabilize
the low spin states. U is the energy difference between the ionic
(I'J~ or I" J*) and neutral VB structure and t; is the inter-site hop-
ping integral coupling neutral and ionic determinants. Usually,
due to the rapid decrease of the inter-site differential overlap be-
tween the magnetic orbitals, the nonnegligible effective exchange
integrals only concern the couples of nearest-neighbor (NN) sites.
Four-spin operators may be considered, especially in plaquette con-
taining lattices, but they appear at fourth order only.

The estimation of the ground state energy of a regular bipartite
lattice of spin % has been the subject of theoretical works. All
bonds are identical, and have the same magnetic coupling, J. The
Heisenberg Hamiltonian considers all spin distributions of n elec-
trons on n sites, their mean energies and their interactions. The
diagonal energies of these spin distributions are not equal. In anti-
ferromagnetic systems (J > 0) and bipartite (or alternant) lattices
the determinant of lowest energy is the so-called Néel function
where each site of a given spin is surrounded by NN sites of oppo-
site spin. Each bond contributes by a quantity —J/2 to its energy.
The Néel function is unique if the number of sites is odd, there
are two Néel functions if this number is even, but of course for a
very large number of sites the energy per site or per bond does
not depend on this parity and the simpler case of a single Néel
function may be considered. This may of course be seen as a sym-
metry-broken approach. The spin-frustrated graphs are not tracta-
ble in this manner in the absence of a candidate vector to be
considered as a valuable reference function. Starting from the
Néel function, the action of the Hamiltonian may reverse two adja-
cent spins, for instance between sites J and K. The Néel function is
coupled with all the determinants which are obtained by such
adjacent spins permutation. The energies of these determinants
are higher than that of the Néel function since the bonds adjacent
to the permuted spins, i.e. the bonds IJ and KL, are now frustrated.
Being the function of lowest energy with the largest number of off-
diagonal matrix elements the Néel function is the one of largest
coefficient in the ground state eigenfunction. It is tempting to con-
sider this function as a reference function, as we typically do in the
electron correlation problem with the Hartree-Fock single deter-
minant, and to apply one of the familiar single reference tools
developed in Quantum Chemistry to this problem. The difficulty
comes from the ratio between the off-diagonal elements and the
diagonal energy differences, which scales as the (2Nv—2)',
where Nv is the number of bonds in which each site is engaged
(or the number of NN sites). This ratio is as large as %2 for a one-

dimensional (1D) chain, which prevents a perturbative approach
to be considered. The difficulty becomes less dramatic when the
number Nv increases and of course in 2D or 3D systems of various
topologies, but spin systems may be considered as nearly degener-
ate problems.

Among the non-perturbative methods one may quote Coupled
Cluster expansions. The applications of this approach to such prob-
lems are not numerous. One may quote the works of the author
and coworkers [10-14] and those of Bishop et al. [15-18]. These
last authors have introduced many-body operators (up to 10-body
ones) despite the fact that the reference is only coupled to a single
type of spin distributions, namely those obtained by spin ex-
changes between adjacent sites. Our strategy stays with these ele-
mentary excitations in the Coupled Cluster expansion but takes
into account perturbatively the lacking fourth-order processes (as
done for the triples in CCSD(T) methods) and the deviation of mul-
tiple excitation energies from additivity of the excitation energies.
The principles of the method, developed in Refs. [10,13], will be
briefly recalled. Applied to spin ¥ bipartite antiferromagnetic lat-
tices it gave very accurate estimates of the ground state energy
per bond. One advantage is its simplicity, the results are practically
analytical. The present paper would like to extend this strategy to
spin S = 1 periodic antiferromagnetic lattices.

2. The Hamiltonian

If one considers magnetic sites with 2 electrons in 2 orbitals, a;
and b; on site I, the ground state of the site is a triplet according to
the Hund’s rule, with 3 possible Ms = +1,0 or —1 components,

T, = |a;bi]
T? = (\a,—E,—| + |albl|)/\/§ (1)
T; = [aibi|

The open-shell singlet state S? = (|a;b;| — |a;b;])/v/2 lies at an energy
2K, above the triplet configuration, and it will be omitted in the
modelization, assuming that this intra-site exchange integral is
much larger than the inter-site effective exchanges K >> |[J|. The
working space will actually be defined by all possible products of
on-site triplet states. The Heisenberg Hamiltonian may be written
as

HY =3 J5(SiS; +1) 2)

<ij>

where the identity operator I insures that the ferromagnetic state
energy is taken as the zero of energy. The amplitude of the hereafter
supposed antiferromagnetic coupling is now

Jy =Y Kap ~ 222, /U 3)
a;b;

where g; and b; are magnetic orbitals on sites I and J.

The inter-site coupling constants Jj; reflect the mixing with ionic
VB determinants, which stabilize the spin alternant distributions
and introduce inter-site spin exchanges. Let us recall the main cou-
plings of a spin S=1 Heisenberg Hamiltonian between two sites,
for the diagonal elements,

(TATg |H|TATy) = (T4 Ty [H|T, Ty ) = 0 (4)
(TaTg H|TaTy) = (T4 T3 [H|T, Ty) = 2 (4b)
<T}T§\H T;T3) = <T;T§]H’T;Tg> = <T2T2)H‘T2Tg> =], (40

according to the j(Sfo — 1) diagonal part of the spin Hamiltonian.



Download English Version:

https://daneshyari.com/en/article/5374351

Download Persian Version:

https://daneshyari.com/article/5374351

Daneshyari.com


https://daneshyari.com/en/article/5374351
https://daneshyari.com/article/5374351
https://daneshyari.com

