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The second virial coefficients of Exp-6 chains are calculated using the Monte Carlo method. The results
are presented as the scaled second virial coefficient B,/(m?¢>) for various chain lengths m and repul-
sive-wall steepness parameters o at different scaled temperatures T*. The scaled coefficient reduces
and converges to a constant value as m — oo. Interestingly, the scaled coefficient scales as B/
(m?63) < —a~!, where the dependence reduces for larger m. The gyration radius increases with «, and
in good solvent regime, scales like a self-avoiding chain when m — cc. The interaction energy between
two chains depends on m, T%, and o. With increasing m, the interaction becomes less repulsive. With
increasing o or T*, the repulsion between chains increases, and chains behave as they are in good solvent
conditions. Moreover, the 6 point decreases with increasing « and reducing m. Finally, the results are
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compared with the theoretical predictions using the PHSC model.
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1. Introduction

There have been long-standing theoretical and experimental ef-
forts on characterizing the osmotic pressure of polymeric solu-
tions. Generally, two different approaches have been developed
for the theoretical derivation of the osmotic pressure [1]: one uses
a discrete model leading to the lattice theory and the other a con-
tinuum model, which is based on either the McMillan-Mayer the-
ory or the pair correlation function inhered in the simple theory of
liquids. The McMillan-Mayer theory highlights an analogy be-
tween the virial expansion of the osmotic pressure and gas pres-
sure. Thus, the cornerstone of the theoretical osmotic pressure
derivation is to calculate virial coefficients.

Atlow enough pressure and density, the leading coefficient for the
specification of the gas pressure is the second virial coefficient B,
where this quantity is equivalent to the osmotic second virial coeffi-
cient of a polymeric solution A, as long as the segment-segment
interactions of chain fluids are specified by a solvent-mediated po-
tential model.

In last two decades, there have been extensive molecular
-simulation and theoretical studies for describing chain fluids with
various segment-segment interaction potential models, such as
hard-sphere, square-well, and Lennard-Jones (LJ) [2-5]. However,
there exists limited study on Exp-6 or modified-Buckingham chain

* Corresponding author.
E-mail address: ramazani@sharif.edu (A. Ramazani Saadatabadi).
! Present address: Department of Chemical Engineering, McGill University, Mon-
treal, QC, Canada.

0301-0104/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.chemphys.2011.12.003

fluids [6], mainly arising from the relatively complex form of the
Exp-6 potential model for molecular simulations and theoretical
treatments compared with the other foregoing potential models.

Even though the L] model, which has a simple form, describes
the nonbonded interaction energy fairly well at moderate experi-
mental conditions, but it fails at high enough pressure and densi-
ties (for example, see [7]). In spite of some simulations studies
[29], the Exp-6 model is believed to be more realistic than the L]
model for describing the non-bonded interaction energy, and this
apparently complex potential model proves successful in describ-
ing the properties of fluids compared to the L] model at high en-
ough pressure and density, and over wide ranges of pressure and
temperature [6,8-11]. Moreover, the Exp-6 potential model is
becoming increasingly interested for modeling phase equilibria
and transport properties of fluids (see [12,13] and references there-
in). In parallel, there have been increasing interest in potential
models such as Mie (n — 6), which has the same number of param-
eters as the Exp-6 potential model [33,30,32].

A successful method, even though computationally expensive,
for the determination of B, of chain fluids is using the Monte Carlo
(MC) method. References [14-16,3,17] presented B, of, respec-
tively, hard-sphere, square-well, and L] chain fluids using the
Monte Carlo method. However, in recent years, the modeling of
chains is becoming increasingly atomistic [18]. Even though, these
atomistic models do not require the classical assumptions inhered
in idealized models, but the analytical investigation of these atom-
istic models are not as easy and clean as idealized models. Also,
simulating idealized models provide guidelines for developing
more accurate and realistic theories.
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Here, we present the second virial coefficient of Exp-6 chains by
the MC method, and we compare the theoretical predictions of the
coefficient with the MC values. The remainder of this work is out-
lined as follows. In Section 2, the potential model and the Monte
Carlo method are described. In Section 3, the results are presented,
and we use PHSC (Perturbed Hard Sphere Chain Theory) model to
obtain the second virial coefficients of Exp-6 chains theoretically,
and then compare the results with the simulation values. Conclud-
ing remarks are presented in Section 4.

2. The potential model and the Monte Carlo method
2.1. The potential model

In our work, each chain is considered as consisting of m seg-
ments linearly connected by rigid bonds with the bond-length o,
which is assumed to be unit. The non-bonded interaction energy
u between two nonadjacent segments in a chain or between two
segments of two different chains is quantified by the modified-
Buckingham or Exp-6 potential model with the following form
(for a historical review on the derivation of this potential model,
see [19])

00 r<irm
0Ll o0

where r the distance between two segments, o the repulsive-wall
steepness parameter, 1, the distance between two segments at
which the energy of attraction is maximum, i.e. the distance at
which 24| _ =0 and u is negative, € the maximum energy of
attraction occurring at the separation r,,, and Ar,,, the distance at
which Eq. (1) goes through a false maximum, i.e. the distance at
which 2| _, =0 and u is positive. The value of / is the smallest
root of 2% exp[a(1 — 2)] =0 [20]. In the limit ot — oo, the Exp-6 po-
tential reduces to the following equation which, in principle, is
the Sutherland potential model,

00 r<Tnm
6 2)
fe(a) r>Tn.

Following the foregoing method, the values of 1 and r,, for various
values of o = 15, 30, 100, and oo are presented in Table 1. However,
analytical expressions for r,;, and 4 as a function of « are reported in
the literature [10].

Fig. 1 highlights the influence of the repulsive wall steepness o
on the potential energy between two interacting segments. Evi-
dently, with increasing «, the repulsion between segments en-
hances. There are various simulation studies on the effect of « on
thermodynamic properties and phase equilibria of Exp-6 fluids
including, the work of [11] highlighting the reduction of the tem-
perature range over which vapor-liquid coexistence is observed,
and the work of [8] highlighting the larger «, the harder is an
Exp-6 fluid.

u(r) =

2.2. The Monte Carlo method

The equation of state is expressed using the virial expansion as

Table 1

Values of /4 and r,, for various values of .
o A 0[rm
15 1.682455 x 107! 0.894170
30 1.465604 x 1072 0.932341
100 6.248806 x 1077 0.970041
00 - 1.00
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Fig. 1. The scaled segment-segment potential versus the distance for various
o =15, 30, 100, and cc.
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where P is the pressure, p the density, T the absolute temperature,
kg the Boltzmann constant, B, the second virial coefficient, and Bs
the third virial coefficient. For spherically symmetric molecules,
where the intermolecular potential energy U depends only on the
intermolecular distance r, B, is [7]

B, = 27‘(/ [1— e U0/ sD 2y, @
0

For polyatomic or complex molecules, the potential energy not only
depends on the distance between molecules centers, but also is a
function of the orientations and conformations of the molecules.
In such cases, the second virial coefficient is [21,1]
fe_Ul(Ql)/(kBT)e_UZ(QZ>/(kET)[1 _ e—Uu(Rlz)/(kBT)}dedeldQ2

B, = 2 [e Ui@NaDdQ, [e U@)/sDdQ, o 0

where U;(£21) and U,(€,) are the intramolecular energies, U;2(R;2)
the intermolecular potential, 2; and €, the conformations of the
two molecules, and R;, the distance between the centers of mass
of the two molecules. The second virial coefficient for polyatomic
or complex molecules cannot be determined with common integra-
tion methods because of high dimensional integral inhered in Eq.
(5). The most efficient method to perform the integration is using
the Monte Carlo method.

Few MC methods have been developed for evaluating the virial
coefficients, including parallel tempering (see [17], and references
therein), Mayer-Sampling (see [18], and references therein), grand
canonical (see [22], and references therein), and a classical method
utilizing pivot [19,23] or reptation algorithm [16].

Here, we use the classical MC method for calculating the second
virial coefficient of Exp-6 chains through Eq. (5). For this purpose,
single chain conformations are produced by the pivot algorithm
[19]. In the pivot algorithm, a trial conformation is generated by
randomly choosing a segment as the pivot point, and by rotating
the shorter end of the chain around the pivot point. The new gen-
erated conformation is accepted with the probability min{1,e-
xp[ — (Ex — E1)/(kgT)]}, where E; and E, are the intramolecular
potential energies of the chain old and trial conformations, respec-
tively. Thus, two distinct sets of single chain conformations are
generated. Then, the average intermolecular energy is calculated
as follows; two conformations, one from each set, are placed at a
random configuration, say, i at a given distance between the two
chains centers of mass Rij, i.e. they placed at randomly chosen
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