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a b s t r a c t

To address the impact of electron correlations in the linear and non-linear response regimes of interacting
many-electron systems exposed to time-dependent external fields, we study one-dimensional (1D)
systems where the interacting problem is solved exactly by exploiting the mapping of the 1D N-electron
problem onto an N-dimensional single electron problem. We analyze the performance of the recently
derived 1D local density approximation as well as the exact-exchange orbital functional for those
systems. We show that the interaction with an external resonant laser field shows Rabi oscillations which
are detuned due to the lack of memory in adiabatic approximations. To investigate situations where static
correlations play a role, we consider the time-evolution of the natural occupation numbers associated to
the reduced one-body density matrix. Those studies shed light on the non-locality and time-dependence
of the exchange and correlation functionals in time-dependent density and density-matrix functional
theories.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Since its invention in 1984 time-dependent density-functional
theory (TDDFT) has become one of the major tools for describing
time-dependent phenomena of electronic systems [1,2]. Despite its
success, several important questions remain open. A prominent
example are double excitations [3], which cannot be described with
adiabatic approximations to the exchange-correlation (xc) kernel
[4]. Other examples include the description of memory [5], charge-
transfer excitations [6], Rabi oscillations [7], and population control
[8,9]. Also, the construction of functionals for certain observables can
be problematic, like e.g. double-ionization in strong laser fields
where one strategy rests on expressing the pair-correlation function
as a functional of the time-dependent density [10].

In many cases, there is little knowledge about how the dynamics
of the many-body system interacting with an arbitrary external
time-dependent field is mapped onto the non-interacting (time-
dependent) Kohn–Sham system. Here, one-dimensional systems

can provide insight since these systems can be exactly diagonalized
and subsequently propagated in time for a small number of
electrons. We provide insight into the limitations of adiabatic func-
tionals, especially for describing non-linear electron dynamics
exemplified by the case of Rabi oscillations.

This article is organized as follows, we first highlight the exact
mapping of a many-electron system onto an N-dimensional one-
electron problem and the selection of proper fermionic solutions.
Then, we discuss the recently developed one-dimensional local
density approximation (LDA) and its performance for calculating
linear and non-linear response. We use the LDA as well as exact
exchange (EXX) to investigate the description of double excitations
and Rabi oscillations with adiabatic approximations. We then
change from TDDFT to reduced density-matrix functional theory,
where we discuss under which conditions adiabatic approxima-
tions provide a valid description. We conclude the paper with a
short summary and perspectives.

2. One-dimensional model systems

The Hamiltonian for N electrons moving in a general, possibly
time dependent, external potential vext in one spatial dimension
reads
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where vint describes the electron–electron interaction (atomic units
e = m = ⁄ = 1 are used throughout this paper). In one spatial dimen-
sion the singularity of the ordinary Coulomb interaction prevents
electrons from passing the position of the singularity, both in the
attractive and repulsive case. In order to avoid this unphysical
behavior of the full Coulomb interaction we employ the so called
soft-Coulomb interaction

vsoft�Cðx1; x2Þ ¼
q1q2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ ðx1 � x2Þ2
q ð2Þ

instead [11]. Here, q1 and q2 describe the charges of the particles
while a is the usual softening parameter. We use a = 1 for all our
calculations. Mathematically, it is straightforward to show that
the Hamiltonian (1) is equivalent to a Hamiltonian for a single
particle in N dimensions moving in an external potential

vNdimðx1 . . . xNÞ ¼
XN

j¼1

vextðxjÞ þ
1
2

XN

j;k¼1
j–k

v intðxj; xkÞ ð3Þ

consisting of all the contributions from vext and vint. The corre-
sponding Schrödinger equation can, hence, be solved by any code
which is able to treat non-interacting particles in the correct
number of dimensions in an arbitrary external potential.

Due to the Hamiltonian being symmetric under particle inter-
change, xj M xk, the solutions of the Schrödinger equation can be
classified according to irreducible representations of the permuta-
tion group. For the simplest case of two interacting electrons both
the symmetric and antisymmetric solutions are valid correspond-
ing to the singlet and triplet spin configurations, respectively. For
more than two electrons one needs to separately ensure that the
spatial wave function is a solution to the N-electron problem. For
example, a totally symmetric spatial wave function is a correct
solution for a single particle in N dimensions, however, for N > 2
there is no corresponding spin function such that the total wave
function has the required antisymmetry to be a solution of the N
particle problem in 1D. We solve this problem by symmetrizing
the solutions according to all possible fermionic Young diagrams
for the given particle number N [12]. Fig. 1 shows all possible
standard Young diagrams for the spatial part of the wave function
for two and three electrons. As the spin of the electron is 1/2, the
Young diagrams for the spin part can maximally have two rows,
one for each spin direction. The Young diagrams for the spatial part
of the wave function are then given as the transpose of the respec-
tive spin diagram and, hence, have at most two columns. For two
electrons there exist two diagrams corresponding to the singlet
(Fig. 1a) and triplet (Fig. 1b) configurations. For three electrons,
there exist two diagrams with two electrons in one spin channel

and the remaining electron in the other channel (Fig. 1 c and d)
and one diagram with all electrons having the same spin (Fig. 1 e).

In practice, we solve the Schrödinger equation in N dimensions
and then symmetrize each solution according to the Young
diagrams for the given particle number. If none of the Young
diagrams yields a non-vanishing solution after symmetrization
the state does not describe a solution for spin-1/2 particles and is
discarded. If a state yields a non-vanishing contribution for a given
diagram the appropriately symmetrized state is normalized and
used in further calculations.

The solution of higher dimensional problems within these sym-
metry restrictions has been implemented in the octopus computer
program [13,14]. The lowest energy solution is found to be purely
symmetric and is, therefore, for N > 2, discarded. With increasing
number of electrons we also observe an increasing number of states
which do not satisfy the fermionic symmetry requirements.

3. Local density approximation

The local density approximation for electrons interacting in one
spatial dimension is derived from quantum Monte-Carlo calcula-
tions for a 1D homogeneous electron gas where the electrons inter-
act via the soft-Coulomb interaction in Eq. (2)[15]. The correlation
energy is parametrized in terms of rs and the spin polarization f =
(N" � N;)/N in the form

�cðrs; fÞ ¼ �cðrs; f ¼ 0Þ þ f2½�cðrs; f ¼ 1Þ � �cðrs; f ¼ 0Þ� ð4Þ

with

�cðrs; f ¼ 0;1Þ ¼ �1
2

rs þ Er2
s

Aþ Brs þ Cr2
s þ Dr3

s

� ln 1þ ars þ brm
s

� �
ð5Þ

which proves to be very accurate in the parameterization for 1D
systems for different long-range interactions [16,17,15]. Note, that
the above energy is given in Hartree units. To obtain a priori the
exact high-density result known from the random-phase approxi-
mation, i.e.

�cðrs ! 0; f ¼ 0Þ ¼ � 4
p4a2 r2

s ; ð6Þ

�cðrs ! 0; f ¼ 1Þ ¼ � 1
2p4a2 r2

s ; ð7Þ

to leading order in rs, we fix the ratio a/A to be equal to 8/(p4a2) and
1/(p4a2) for f = 0 and f = 1, respectively. In both cases m is limited to
values larger than 1. As a result, the number of independent
parameters in Eq. (5) is reduced to 7. In addition, for a = 1 the
denominator can be simplified by setting B = 0. However, for
smaller values of the softening parameter the linear term in the
denominator is important for achieving agreement with the
quantum Monte-Carlo results. The optimal values of the parameters
are given in Table 1. For more details on the 1D QMC methodology
and the parameterization procedure we refer to Refs. [16,17].

We have implemented the 1D LDA for a = 1 in both unpolarized
and polarized versions in the octopus program [13,14].

Fig. 2 shows the linear and non-linear absorption spectra of a
1D Be2+system, i.e. with an external potential of

vBe
extðxÞ ¼

�4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ a2
p ð8Þ

containing two electrons. We use the LDA as an adiabatic approxi-
mation to the exact time-dependent exchange-correlation poten-
tial. The spectrum is calculated in linear response to a spatially
constant perturbation at t = 0, i.e. we apply an additional external
electric field E in dipole approximation

vkick
ext ðx; tÞ ¼ xE0dðtÞ ð9Þ
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Fig. 1. Possible standard Young diagrams for the spatial part of the wave function
for two [figures (a) and (b)] and three [figures (c) to (e)] electrons. There are
maximally two columns in each diagram, one for each spin direction. Figures (a)
and (b) correspond to the two electron singlet and triplet, respectively. For diagram
(c) the wave function is symmetrized for particles 1 and 2 and antisymmetrized for
1 and 3, while for diagram (d) the symmetrization is with respect to particles 1 and
3 and the antisymmetrization with respect to 1 and 2. For diagram (e) the wave
function is antisymmetrized with respect to the interchange of any two particles.
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