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a b s t r a c t

Almost all time-dependent density-functional theory (TDDFT) calculations of excited states make use of
the adiabatic approximation, which implies a frequency-independent exchange-correlation kernel that
limits applications to one-hole/one-particle states. To remedy this problem, Maitra et al. [N.T. Maitra,
F. Zhang, R.J. Cave, K. Burke, Double excitations within time-dependent density functional theory linear
response theory, J. Chem. Phys. 120 (2004) 5932 ] proposed dressed TDDFT (D-TDDFT), which includes
explicit two-hole/two-particle states by adding a frequency-dependent term to adiabatic TDDFT. This
paper offers the first extensive test of D-TDDFT, and its ability to represent excitation energies in a gen-
eral fashion. We present D-TDDFT excited states for 28 chromophores and compare them with the bench-
mark results of Schreiber et al. [M. Schreiber, M.R. Silva-Junior, S.P.A. Sauer, W. Thiel, Benchmarks for
electronically excited states: CASPT2, CC2, CCSD, and CC3, J. Chem. Phys. 128 (2008) 134110]. We find
the choice of functional used for the A-TDDFT step to be critical for positioning the 1h1p states with
respect to the 2h2p states. We observe that D-TDDFT without HF exchange increases the error in excita-
tions already underestimated by A-TDDFT. This problem is largely remedied by implementation of
D-TDDFT including Hartree–Fock exchange.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Time-dependent density-functional theory (TDDFT) is a popular
approach for modeling the excited states of medium- and large-
sized molecules. It is a formally exact theory [1], which involves
an exact exchange-correlation (xc) kernel with a role similar to
the xc-functional of the Hohenberg–Kohn–Sham ground-state the-
ory. Since the exact xc-functional is not known, practical calcula-
tions involve approximations. Most TDDFT applications use the
so-called adiabatic approximation which supposes that the xc-po-
tential responds instantaneously and without memory to any
change in the self-consistent field [1]. The adiabatic approximation
limits TDDFT to one hole-one particle (1h1p) excitations (i.e., sin-
gle excitations), albeit dressed to include electron correlation ef-
fects [2]. Overcoming this limitation is desirable for applications
of TDDFT to systems in which 2h2p excitations (i.e., double excita-
tions) are required, including the excited states of polyenes, open-
shell molecules, and many common photochemical reactions

[3–5]. Burke and coworkers [6,7] proposed the dressed TDDFT
(D-TDDFT) model, an extension to adiabatic TDDFT (A-TDDFT)
which explicitly includes 2h2p states. The D-TDDFT kernel adds
frequency-dependent terms from many-body theory to the adiabatic
xc-kernel. While initial results on polyenic systems appear encour-
aging [7–9], no systematic assessment has been made for a large
set of molecules. The present article reports the first systematic
study of D-TDDFT for a large test set namely, the low-lying excited
states of 28 organic molecules for which benchmark results exist
[10,11]. This study has been carried out with several variations of
D-TDDFT implemented in a development version of the density-
functional theory (DFT) code deMon2k [12].

The formal foundations of TDDFT were laid out by Runge and
Gross (RG) [1] which put on rigorous grounds the earlier TDDFT
calculations of Zangwill and Soven [13]. The original RG theorems
showed some subtle problems [14], which have been since re-
examined, criticized, and improved [15–17] providing a remark-
ably well-founded theory (for a recent review see [18].) A key
feature of this formal theory is a time-dependent Kohn–Sham
equation containing a time-dependent xc-potential describing
the propagation of the density after a time-dependent perturbation
is applied to the system. Casida used linear response (LR) theory to
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derive an equation for calculating excitation energies and oscillator
strengths from TDDFT [19]. The resultant TDDFT response equa-
tions [19] are

AðxÞ BðxÞ
�B�ðxÞ �A�ðxÞ

� �
X
Y

� �
¼ x

X
Y

� �
: ð1:1Þ

Here A(x) and B(x) explicitly include the Hartree (H) and xc
kernels,

Aair;bjs ¼ �ra � �ri
� �

dijdabdrs þ iajf r;s
HxcðxÞjbj

� �
Bair;bjs ¼ ðiajf r;s

HxcðxÞjjbÞ; ð1:2Þ

where �rp is the KS orbital energy for spin r, and

ðpqjf ðxÞjrsÞ ¼
Z

d3r
Z

d3r0/�pðrÞ/qðrÞf ðr; r0;xÞ/�r ðr0Þ/sðr0Þ: ð1:3Þ

Here and throughout this paper we use the following indexes nota-
tion: i, j, . . . are occupied orbitals, a, b, . . . are virtual orbitals, and p,
q, . . . are orbitals of unspecified nature.

In chemical applications of TDDFT, the Tamm–Dancoff approx-
imation (TDA) [20],

AðxÞX ¼ xX ð1:4Þ

improves excited state potential energy surfaces [21,22], though
sacrificing the Thomas–Reine–Kuhn sum rule. Although the stan-
dard random-phase approximation (RPA) equations [23] provide
only 1h1p states, the exact LR-TDDFT equations include also 2h2p
states (and higher-order nhnp states) through the x-dependence
of the xc part of the kernel f r;s

xc ðxÞ. However, the matrices A(x)
and B(x) are supposed x-independent in the adiabatic approxima-
tion to the xc-kernel, thereby losing the non-linearity of the LR-
TDDFT equations and the associated 2h2p (and higher) states.

Double excitations are essential ingredients for a proper
description of several physical and chemical processes. Though
they do not appear directly in photo-absorption spectra, (i.e., they
are dark states), signatures of 2h2p states appear indirectly
through mixing with 1h1p states, thereby leading to the fracturing
of main peaks into satellites [24,25]. In open-shell molecules such
mixing is often required in order to maintain spin symmetry
[2,26,27]. Perhaps more importantly dark states often play an
essential important role in photochemistry and explicit inclusion
of 2h2p states is often considered necessary for a minimally correct
description of conical intersections [5]. A closely-related historical,
but still much studied, problem is the location of 2h2p states in
polyenes [28,3,29–35], partly because of the importance of the
polyene retinal in the photochemistry of vision [36–38].

It is thus manifest that some form of explicit inclusion of 2h2p
states is required within TDDFT when attacking certain types of
problems [39]. This has lead to various attempts to include 2h2p
states in TDDFT. One partial solution was given by spin-flip TDDFT
[40,41] which describes some states which are 2h2p with respect
to the ground state by beginning with the lowest triplet state
and including spin-flip excitations [42–45]. However, spin-flip
TDDFT does not provide a general way to include double excita-
tions. Strengths and limitations of this theory have been discussed
in recent work [46].

The present article focuses on D-TDDFT, which offers a general
model for including explicitly 2h2p states in TDDFT. D-TDDFT was
initially proposed by Maitra, Zhang, Cave and Burke as an ad hoc
many-body theory correction to TDDFT [6]. They subsequently
tested it on butadiene and hexatriene with encouraging results
[7]. The method was then reimplemented and tested on longer
polyenes and substituted polyenes by Mazur et al. [8,9].

In the present work, we consider several variants of D-TDDFT,
implement and test them on the set of molecules proposed by
Schreiber et al. [10,11] The set consists of 28 organic molecules

whose excitation energies are well characterized both experimen-
tally or through high-quality ab initio wavefunction calculations.

This paper is organized as follows. Section 2 describes D-TDDFT
in some detail and the variations that we have implemented. Sec-
tion 3 describes technical aspects of how the formal equations
were implemented in deMon2k, as well as additional features
which were implemented specifically for this study. Section 4 de-
scribes computational details such as basis sets and choice of
geometries. Section 5 presents and discusses results. Finally, Sec-
tion 6 concludes.

2. Formal equations

D-TDDFT may be understood as an approximation to exact
equations for the xc-kernel [47]. This section reviews D-TDDFT
and the variations which have been implemented and tested in
the present work.

An ab initio expression for the xc-kernel may be derived from
many-body theory, either from the Bethe–Salpeter equation or
from the polarization propagator (PP) formalism [2,48]. Both equa-
tions give the same xc-kernel,

fxcðx; x0; xÞ ¼
Z

d3x1

Z
d3x2

Z
d3x3

�
Z

d3x4Ksðx; x1; x2; xÞKðx1; x2; x3; x4; xÞKyðx3; x4; x0; xÞ;

ð2:1Þ

where xp = (rp,rp), K is defined as

Kðx1;x2; x3;x4;xÞ ¼ P�1
s ðx1;x2; x3;x4;xÞ �P�1ðx1; x2; x3; x4;xÞ

ð2:2Þ

and P and Ps are respectively the interacting and non-interacting
polarization propagators, which contribute to the pole structure of
the xc-kernel. The interacting and non-interacting localizers, K
and Ks, respectively, convert the 4-point polarization propagators
into the 2-point TDDFT quantities (4-point and 2-point refer to
the space coordinates of each kernel.) The localization process
introduces an extra x-dependence into the xc-kernel. Interestingly,
Gonze and Scheffler [49] noticed that, when we substitute the inter-
acting by the non-interacting localizer in Eq. (2.1), the localization
effects can be neglected for key matrix elements of the xc-kernel
at certain frequencies, meaning that the x-dependence exactly can-
cels the spatial localization. More importantly, removing the local-
izers simply means replacing TDDFT with many-body theory terms.
To the extent that both methods represent the same level of
approximation, excitation energies and oscillator strengths are
unaffected, though the components of the transition density will
change in a finite basis representation. In Ref. [2], Casida proposed
a PP form of D-TDDFT without the localizer. In Ref. [47], Huix-Rotl-
lant and Casida gave explicit expressions for an ab initio x-depen-
dent xc-kernel derived from a Kohn–Sham-based second-order
polarization propagator (SOPPA) formula. Equivalent expressions
were derived by Zhang and Burke in Ref. [50], in which they calcu-
lated the excitation energy by truncating to second-order the Gör-
ling–Levy perturbation theory.

The calculation of the xc-kernel in SOPPA can be cast in RPA-like
form. In the TDA approximation, we obtain

½A11 þ A12 x122 � A22ð Þ�1A21�X ¼ xX; ð2:3Þ

which provides a matrix representation of the second-order approx-
imation of the many-body theory kernel K(x1,x2;x3,x4;x). The
blocks A11, A21 and A22 couple respectively single excitations among
themselves, single excitations with double excitations and double
excitations among themselves. In Appendix A we give explicit equa-
tions for these blocks in the case of a SOPPA calculation based on
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