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a b s t r a c t

We investigate effects of coupling two chemical subsystems through diffusion of chemical species. We
consider the Langevin description of the actual microscopic dynamics and show that diffusive coupling
gives rise to a common noise term along with the deterministic interaction. As a model example, we
study two diffusively coupled Brusselator systems. By numerical Langevin simulations, we inspect the
effect of the common noise term on the total correlation between the two Brusselators; we also verify
the validity of the Langevin approach by comparison to simulations of the more accurate master equa-
tion. The intrinsic common noise has its strongest effect for the Brusselator dynamics operating at a sta-
ble fixed point far from the Hopf bifurcation; in this case, the common noise reduces the correlation of the
Brusselators significantly. We also show that for specific parameter sets the covariance between the sys-
tems is maximized (or minimized) at a finite system size.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Intrinsic noise is important in chemical reactions that involve
only a small number of molecules. This condition is met in many
biochemical reactions that occur in cells [1] which are additionally
subject to environmental (external) noise [1,2]. Dynamical
behaviors that are shaped by these noise sources range from mere
steady-state fluctuations [2] to sustained stochastic oscillations
[3–6] and transitions between metastable states [7].

Effects of intrinsic noise can be either studied by the master
equation for the actual number of reacting molecules [8] or by
the chemical Langevin equation (CLE) and its corresponding
Fokker–Planck equation [9,10]; the limitations of the latter have
been explored by Peter Hänggi in his early work, see, e.g. [11,12].
The CLE basically represents a stochastic version of the well-known
rate equations of chemical physics. Therefore, in many cases it is
more instructive than the master equation because in the deter-
ministic limit (infinitely many molecules), the CLEs correspond to
the standard rate equations. For example, if the rate equations
show a limit-cycle solution, it is plausible from the respective
Langevin equations that the corresponding finite system displays
stochastic oscillations. This behavior would be much harder to pre-
dict from the more exact but cumbersome master equation.
Numerical studies have shown that the Langevin equation can

approximate the master equation faithfully for sufficiently high
number of molecules [10].

The description by a master equation becomes particularly
cumbersome for coupled chemical systems. Such systems are of
special interest because they are capable of cooperative behavior.
In order to theoretically describe phenomena like synchronization,
which are ubiquitous in a wide variety of natural systems [13],
coupled rate or Langevin equations are often considered instead
of the full master equation (for limitations of the rate-equation ap-
proach compared to the master equation in a coupled system, see
Ref. [14]). Such mathematical models can describe, for instance,
cooperative behavior in coupled biochemical systems, observed
across a large population of cells [15,16,4,17–19]. Here, intercell
signaling provides the dynamical coupling, for instance, by quorum
sensing [20,21] (signaling molecules exchanged between cells reg-
ulating their behavior).

Distributed systems can show strong correlations even if its ele-
ments are uncoupled but all elements are driven by a common
stimulus. This has been studied in detail, for generic limit-cycle
oscillators [22,23] and for excitable neural models [24] as well as
experimentally in real neurons [25,26].

In this paper we are interested in the effects of intrinsic com-
mon noise arising from the coupling of chemical systems. From a
theoretical point of view, this brings together the two different ori-
gins of cooperative behavior emerging in distributed systems: cou-
pling and common stimulus. As an example, consider two
subsystems specified by variables fXg and fX0g and having similar
reaction channels. Assume that there is one chemical species, say
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Xi and X0i which can freely diffuse between them [27]. The corre-
sponding reaction channels

Xi �
e

e0
X 0i; ð1Þ

couple the two subsystems. Depending on the rate of diffusion gov-
erned by e and e0, the other variables Xj and X0j (with j – i) can display
correlations. As we will argue in the next section, such coupling via
Eq. (1) introduces besides the usually considered deterministic
interaction term, a common noise term in the chemical Langevin
equation for the coupled system. The specific form of the common
noise is multiplicative (it involves the number of molecules of the
diffusing species) and anti-correlated between the systems (it enters
with different signs into the dynamics of the two subsystems). In or-
der to separate out the effects of the deterministic coupling and the
common noise, we artificially set one of them to zero and compare
the resulting correlation statistics to those of the full system. We
also compare our extensive simulations of the chemical Langevin
equations with simulations of the master equation. We aim at a
thorough characterization of the effect of intrinsic noise in the sys-
tem of two coupled Brusselators by looking at the equal-time covari-
ance and the corresponding correlation coefficient [see Eqs. (15) and
(16)] for various dynamical regimes of the Brusselator model.

In Section 2, we discuss the effect of coupling two arbitrary
chemical systems diffusively, and introduce our methodology of
study. In Section 3, we study the equal-time cross-correlation of
two coupled Brusselators taking separately into account determin-
istic coupling and intrinsic common noise. We conclude in Section
4 with a summary and discussion of our results.

2. Methodology and coupling mechanism

A chemical process at the microscopic level can be specified by
a set of elementary processes which are symbolically written as a
set of ‘‘reaction” channels

Xi þ Xj þ � � �!
cm Xk þ X‘ þ � � � ; ð2Þ

where the X represent the number of molecules of different chem-
ical species (represented by the subscript), and cm is the rate for the
mth such channel. The time evolution of such a system can be trea-
ted as a stochastic process where the chemical species XiðtÞ are ran-
dom variables. Such molecular fluctuations are often referred to as
internal noise since their origin is in the very mechanism of the evo-
lution of the state of the system [9]. The strength of the noise de-
pends on the volume of the system and the reaction propensities
and is not always small enough to be treated perturbatively.

As is well known, such a system is described by a master equa-
tion (ME) [9] for the evolution of configurational probabilities [9],
which is written as

d
dt

PðC; tÞ ¼
X

C0
PðC 0; tÞWC0!C �

X
C0

PðC; tÞWC!C0 ; ð3Þ

where PðC; tÞ is the probability of configuration C at time t and {W}
are the transition probabilities.

One way to study such a system is by using stochastic simula-
tion techniques [8]. The Gillespie algorithm [8] is consistent with
the master equation formalism and gives a numerical method to
study the time evolution of different chemical species. Alterna-
tively, one can obtain the chemical Langevin equation (CLE) for
the system, which provides an approximate description for suffi-
ciently large system size [10]. In general, these will have the form

dXiðtÞ
dt

¼
XM

j¼1

mjiajðXðtÞÞ þ
XM

j¼1

mjia
1=2
j ðXðtÞÞnjðtÞ; ð4Þ

where mji is the change in Xi produced by the jth reaction (typically, an
integer number), ajðXðtÞÞ is the propensity of jth reaction and njðtÞ are

temporally uncorrelated, statistically independent Gaussian white
noises with hniðtÞi ¼ 0 and hniðtÞnjðt0Þi ¼ dijdðt � t0Þ. Note that the
Xi’s are treated as continuous rather than discrete variables and that
the equations have to be interpreted in the sense of Ito [9]. This equa-
tion can be solved numerically by the simple Euler scheme:

Xiðt þ dtÞ ¼ XiðtÞ þ
XM

j¼1

mjiajðXðtÞÞdt þ
XM

j¼1

mjia
1=2
j ðXðtÞÞNjðtÞðdtÞ1=2

;

ð5Þ
where NjðtÞ are normally distributed variables with zero mean and
unit variance. Instead of considering the number of molecules, we
use in the following the concentrations xi ¼ Xi=V (V is the volume)
and their corresponding Langevin equations. Because the propensi-
ties ai scale with the volume, the deterministic parts of the Langevin
equations for the concentrations will be (largely) independent of
the volume, whereas the stochastic force scales like V�1=2.

Let us consider two uncoupled chemical systems with species
denoted by X and X0 and corresponding concentrations x and x0,
with identical reaction schemes and the same chemical rates.
The Langevin equations for the two uncoupled systems will have
the general form:

_x ¼ f ðxÞ þ gðx;VÞnxðtÞ; ð6Þ
_x0 ¼ f ðx0Þ þ gðx0;VÞnx0 ðtÞ; ð7Þ

where nxðtÞ and nx0 ðtÞ are uncorrelated Gaussian white noises. The
functional form of f and g depends on the actual reaction schemes
and is given by Eq. (4). If we now couple the two systems diffusively
via Eq. (1), following the prescription of Eq. (4), we obtain an addi-
tional deterministic interaction term in the drift term of the Lange-
vin equation and an additional common noise term in the
fluctuating driving force:

_x ¼ f ðxÞ þ eðx0 � xÞ þ gðx;VÞnxðtÞ �
ffiffiffiffiffi
ex
V

r
nð1ÞC ðtÞ þ

ffiffiffiffiffiffi
ex0

V

r
nð2ÞC ðtÞ; ð8Þ

_x0 ¼ f ðx0Þ þ eðx� x0Þ þ gðx0;VÞnx0 ðtÞ þ
ffiffiffiffiffi
ex
V

r
nð1ÞC ðtÞ �

ffiffiffiffiffiffi
ex0

V

r
nð2ÞC ðtÞ: ð9Þ

Since nð1ÞC ðtÞ and nð2ÞC ðtÞ are independent noise sources

with nðiÞC ðtÞn
ðjÞ
C ðt0Þ

D E
¼ dðiÞðjÞdðt � t0Þ

� �
appearing due to the coupling,

we can write,ffiffiffiffiffi
ex
V

r
nð1ÞC ðtÞ �

ffiffiffiffiffiffi
ex0

V

r
nð2ÞC ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðxþ x0Þ

V

r
nCðtÞ: ð10Þ

where nCðtÞ is an uncorrelated Gaussian white noise. Eqs. (8) and (9)
is then written as,

_x ¼ f ðxÞ þ eðx0 � xÞ þ gðx;VÞnxðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðxþ x0Þ

V

r
nCðtÞ; ð11Þ

_x0 ¼ f ðx0Þ þ eðx� x0Þ þ gðx0;VÞnx0 ðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
eðxþ x0Þ

V

r
nCðtÞ: ð12Þ

The deterministic interaction term has the usual form of Hooki-
an spring and will be also referred in the following as the deter-
ministic coupling. This term will typically lead to positive
correlations between x and x0. The common noise term (the last
one in both equations) is special in several respects. First, it enters
both equations with opposite signs, i.e., the common noise terms
affecting x and x0 are actually anti-correlated. So, it is plausible that
this term may lead to negative correlations or at least reduce posi-
tive correlations (which are due to the deterministic coupling).
Secondly, the amplitude of the common noise is determined by
the sum of x and x0. A sudden increase in either of the variables will
lead to a sudden increase of the noise level in both systems. Below
we will see an example where such an increase can also lead to po-
sitive correlations.
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