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a b s t r a c t

The combination of an exact stochastic decomposition of non-Markovian dissipative quantum dynamics
with the semiclassical initial value formalism is applied to Brownian motion in a Morse potential. The
unified sampling of the stochastic noise and the semiclassical phase space distribution introduced in
Koch et al. [W. Koch, F. Grossmann, J.T. Stockburger, J. Ankerhold, Non-Markovian semiclassical dynamics,
Phys. Rev. Lett. 100 (2008) 230402] is laid out here in detail. By comparing our numerical results to those
obtained by using the Caldeira–Leggett master equation, we show that even in the challenging regime of
moderate friction and at low temperatures, where reservoir fluctuations are clearly non-Markovian, this
approach allows for the accurate description of dissipative dynamics over many oscillation periods until
thermalization is reached.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades the non-equilibrium dynamics of open quan-
tum systems has been in the focus of interest in many branches of
physics and chemistry [1,2]. The coupling of a (small) system of
interest to a (large) environment is central to such diverse fields
as quantum optics, interaction with phonons in solid state physics,
chemical reactions in solution, and tunneling in biosystems, to
name but a few. From a theoretical point of view, particularly cases
in which perturbative approaches reach their limits have been in
the focus. In addition, in recent years considerable interest has
been stimulated by experimental progress which allows for the tai-
loring and manipulation of quantum matter on ever larger scales.
In mesoscopic physics, for instance, superconducting circuits have
been realized to observe coherent dynamics and entanglement [3].
Similar advance has been achieved on molecular scales with the
detection of interferences in wave packet dynamics and the control
of the population of specific molecular states [4]. These systems are
in contact with a large number of environmental degrees of free-
dom, e.g., electromagnetic modes of the circuitry or vibronic modes
of a rare gas cage surrounding a small molecule [5], which give rise
to substantial modifications of the dynamics through relaxation
and decoherence [6]. These effects are not always intuitive, as evi-
denced by the observation of surprisingly long sustained coherence
in a Schrödinger cat type experiment [5].

The standard way to obtain the reduced dynamics of the small
system of interest is tracing out ‘‘reservoir” degrees of freedom
from the conservative system-plus-reservoir dynamics, using,
e.g., projection operator techniques [7]. This program can also be
carried out using exact path integral expressions for the reduced
density matrix along the lines of Feynman and Vernon [8]. Due
to its non-perturbative nature, the path integral approach became
widely used in the 1980s [9–12]. The central feature of dissipative
path integrals is an influence functional which describes self-inter-
actions non-local in time. Hence, a simple quantum mechanical
analogue to the classical Langevin equation is not known; com-
monly used equations, such as Master/Redfield equations [2] in
the weak-coupling case and quantum Smoluchowski equations
[13] for reservoir-dominated dynamics, rely on perturbation the-
ory. Quantum Monte Carlo techniques have been put forward for
tight-binding systems with strong to intermediate dissipative
coupling. However, the achievable propagation times are severely
limited by the dynamical sign problem [14]. Strong reservoir fluc-
tuations alleviate this problem and make this method viable for
systems in which quantum coherence decays rapidly.

In recent work, it has been shown that the dissipative dynamics
described by Feynman and Vernon can be exactly reproduced
through stochastic Liouville–von Neumann (SLN) equations
without explicit memory [15,16]. This formulation turns out to be
particularly efficient for weak to moderate friction and low
temperatures [15,17], a regime which extends beyond the strict
validity of Redfield equations and bridges the gap to the strong-
coupling case amenable to path integral Monte Carlo methods.
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However, in the simplest form of the SLN approach, the number of
stochastic samples needed for a meaningful numerical result scales
unfavorably with the physical time simulated. Several strategies to
tackle this problem are described in Ref. [17]. For the spin-boson
model a hybrid method including quantum memory terms has
been demonstrated by Yan et al. [18]. A reliable and efficient,
widely applicable method to tackle the dissipative dynamics for
continuous systems in non-perturbative parameter regimes was
first presented in Ref. [19] and termed semiclassical Brownian mo-
tion (SCBM) in Ref. [20].

In the present paper, we give a detailed account of the method-
ology introduced in [19] and apply it to a nonlinear test system. We
show explicitly how we combine the exact stochastic Schrödinger
formulation with the semiclassical initial value representation
(IVR) of the quantum mechanical propagator of Herman and Kluk
(HK) [21,22], which has seen an impressive number of applications
ranging from atomic [23] to chemical physics [24–26] after the
work of Kay [27] stimulated renewed interest in the approach.
We note that a direct stationary-phase evaluation of the double
path integral for the reduced density is not a consistent semiclas-
sical approximation [1] or may involve additional approximations
[28]. An average over thermal fluctuations, which generally do not
admit a Gaussian approximation, is implicit in the reduced density
matrix. The proper classical limit is given by a generalized Lange-
vin equation, which treats thermal fluctuations explicitly. Instead
of a single pair of stationary-phase trajectories, a statistical ensem-
ble of such pairs is needed. We note that efforts are currently under
way to extend the semiclassical initial value approach to dynamics
with quantum memory effects [29,30].

Here, however, we will use a memory-free representation,
which accounts for non-Markovian reservoir fluctuations1 entirely
through correlations of complex-valued noise forces. Our central
finding is that this combination of stochastic and semiclassical
methods provides a consistent semiclassical formulation of quantum
dissipation. We will show that a combined sampling strategy pro-
vides a numerical method which significantly outperforms fully
quantum mechanical stochastic methods, allowing computations
up to times at which equilibrium is reached.

The paper is organized as follows: In Section 2, we review the
stochastic approach used in the remainder of the presentation. In
Section 3 the semiclassical HK propagator is discussed together
with its underlying stochastic classical dynamics. After a brief re-
view of the Caldeira–Leggett master equation in Section 4 and of
the Morse oscillator model in Section 5, our combined sampling
strategy is laid out in detail in Section 6. The results gained with
that numerical strategy for the damped Morse oscillator are pre-
sented and discussed in Section 7. We also compare some of our re-
sults to those obtained from the Caldeira–Leggett master equation
to point out the non-Markovian character of our approach. Finally,
a summary and an outlook are given in Section 8.

2. Stochastic unraveling of influence functionals

We start our description of an open quantum system in the
standard way [1] by formally including a heat bath in a
Hamiltonian

bH ¼ bHS þ bHB þ bHI; ð1Þ

which is a sum of three terms representing a distinguished system,
a heat bath, and the interaction of the system with the thermal res-

ervoir. For simplicity we treat the case of a single degree of freedom
x here, and the case of a separable coupling proportional to x. The
corresponding fluctuating force from the reservoir is assumed to
have Gaussian statistics. (This property may result either from the
central limit theorem or from intrinsically linear dynamics of the
heat bath.)

If the heat bath and the system are initially uncorrelated, one
derives a path integral expression for the time-evolved reduced
density matrix of the form [8,31,1]

qðxf ; x0f ; tÞ ¼
Z

dxi dx0iqðxi; x0i; 0Þ �
Z

D½x1�D½x2�

� exp
i
�h
ðSS½x1� � SS½x2�Þ

� �
� F½x1; x2�; ð2Þ

where the two real-time paths x1 and x2 run in time t from xi and x0i
to xf and x0f , respectively. In addition to the usual exponentiated ac-
tion, a non-separable influence functional F appears, in which all
modifications of the dynamics due to the fluctuations and the
time-dependent response of the heat bath are summed up. Switch-
ing from x1 and x2 to center-of-mass and difference coordinates
r ¼ ðx1 þ x2Þ=2 and y ¼ x1 � x2, the influence functional can be given
the compact form F½y; r� ¼ expð�U½y; r�=�hÞ with

U½y; r� ¼ 1
�h

Z t

0
du
Z u

0
dvyðuÞ L0ðu� vÞyðvÞ þ 2iL00ðu� vÞrðvÞ

� �
þ il

Z t

0
duyðuÞrðuÞ: ð3Þ

The complex-valued friction kernel LðtÞ ¼ L0ðtÞ þ iL00ðtÞ is related to
the force–force auto-correlation function of the bath and is com-
pletely determined by its spectral density JðxÞ and inverse temper-
ature b according to

LðtÞ ¼ �h
p

Z 1

0
dxJðxÞ coth

�hbx
2

cos xt � i sin xt
� �

: ð4Þ

For a Markovian environment, the real and imaginary parts of LðtÞ
may be approximated by multiples of the Dirac delta function and
its derivative, respectively. The static susceptibility denoted by
l ¼ �

R1
0 duL00ðuÞ=ð2�hÞ is a property of the reservoir.2

In Ref. [16] it was shown that a stochastic unraveling of the for-
ward and the backward paths can be given in the form

qðxf ; x0f ; tÞ ¼
Z

dxi

Z
dx0iqðxi; x0i; 0Þ �M½Kz1 ðxf ; t; xi;0Þ

� ðKz2 ðx0f ; t; x0i; 0ÞÞ
��; ð5Þ

where M denotes the average over stochastic forces zj ðj ¼ 1;2Þwith
suitably chosen correlation functions (see below). This random
noise modifies the system action terms; the action to be used in
the path integral expressions of the respective propagators Kzj

is

Szj
½xj� ¼ SS½xj� �

l
2

Z t

0
duxjðuÞ2 þ

Z t

0
duzjðuÞxjðuÞ: ð6Þ

The present stochastic approach differs from a similar one by Strunz
et al. [32] through the appearance of two noise variables, allowing
for the elimination of quantum memory effects in addition to the
stochastic unraveling.

The relative simplicity of Eq. (6) allows the dynamics of the re-
duced density matrix to be described in terms of a simple SLN
equation [16],

i�h
d
dt

q̂ ¼ ½HS; q̂� � n½x; q̂� � �hm
2
½x; q̂�þ þ

l
2
½x2; q̂�; ð7Þ

where nðtÞ ¼ 1
2 ½z1ðtÞ þ z�2ðtÞ� and mðtÞ ¼ 1

�h ½z1ðtÞ � z�2ðtÞ�.
1 In the context of Brownian motion problems, a reservoir is usually considered

Markovian only if its correlation time is the shortest timescale of the problem. This
convention differs from the common usage of ‘Markovian dynamics’ in the context of
quantum optics, where the weaker assumption is made that the reservoir is
considered ‘fast’ in the interaction picture.

2 The potential term lyr in Eq. (3) is conventionally used in cases where the heat
bath is a model for velocity-dependent friction without any static response.
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