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a b s t r a c t

Several approximate methods for propagating the density matrix of systems coupled to baths based on
linearized approximations have been presented. Using influence functional formalism this approximation
is explored in various limits for a condensed phase model. A new iterative stochastic propagation scheme
is introduced that integrates out some of the bath degrees of freedom giving an effective evolution resem-
bling Brownian dynamics. We show that this approach satisfies the fluctuation–dissipation theorem in
various limits. The method is compared with alternative approximate full dimensional propagation
schemes for the spin-boson model. The accuracy of the results is surprising since the scheme makes
approximations about initialization at each iteration. This accuracy is encouraging since these kind of
approaches hold significant potential computational saving for condensed phase quantum dynamics sim-
ulations as they give a systematic way of eliminating the explicit integration of a large number of envi-
ronmental degrees of freedom.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

Recent work in the field of mixed quantum-classical dynamics
[1–8] has employed linearized approximations to the evolution
of the full system. The linearized approximation is applied in par-
ticular when calculating the time dependent density matrix of a
non-equilibrium system or equilibrium time correlation functions.
The general idea is to first separate the interacting degrees of free-
dom of the condensed phase system of interest into a quantum
subset and a classical bath based on relative thermal wavelength
or energy considerations. The forward and backward time propa-
gators in the evolution of the density matrix, or of the correlation
function, are represented as path integrals. The phase in the inte-
grands of these expressions is then expanded to linear order in
the difference between the forward and backward paths of the
bath. The resulting approximate form still contains the full evolu-
tion of the quantum subsystem. If an appropriate representation
for this dynamics is available (e.g. the mapping Hamiltonian or
some semiclassical formulation) the linearized approximation
can be computed using classical trajectories. While the benefits

of the truncation to linear order in the difference paths for the bath
variables are well known and have been exploited in a number of
applications [9–13], work is still in progress to obtain a general
understanding of the conditions under which the approximation
is reliable [14].

Depending on the interplay between the parameters in the
Hamiltonian, the linearized expression can provide a good approx-
imation for evolving the density matrix over different periods of
time. When the linearized approximation is reliable only for short
times, correction schemes can be applied. Recently, an iterative
scheme employing the linearized approximation for the mixed
quantum-classical propagator in the mapping Hamiltonian formu-
lation as a short time approximation in a path integral expression
for long time propagation has been suggested [15]. The approach
provides a systematic way to extend the linearized approximation
to longer times but this comes at a numerical cost that can be sub-
stantially reduced in conditions where linearization is reliable for
longer times. Similar computational problems affect the work of
other groups that have proposed employing approximate short
time propagators to iteratively evolve the density matrix. For
example, Kapral, Ciccotti, and co-workers have developed an itera-
tive solution for the mixed quantum-classical Wigner-Liouville
equation [16–18] based on the Dyson series. The term that is low-
est order in the interaction between the quantum and classical
subsystems in the propagator gives the classical Liouvillian. Higher
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order terms are represented as combinations of classical dynamics
and transitions among states.

Given the computational advantages of the fully linearized
scheme, an appreciation of how it becomes accurate for model sys-
tems important in condensed phase chemical physics is crucial. In
this work we consider and explore one such model: a quantum
system is coupled to a local bath, which in turn interacts with an
environment represented as a set of harmonic oscillators with
bilinear coupling. Such multi-level baths have been studied in var-
ious contexts from the early work of Garg et al. [19], who used a
very similar path integral influence functional approach to the
one we employ here, to explore the qualitative effects of environ-
mental friction and solvent modes (the global bath) on the nuclear
reaction coordinates (the local bath) in determining, for example,
electron transfer rates (the quantum subsystem). The various ap-
proaches we develop here, however, offer a general methodology
for developing mixed quantum-classical trajectory based methods,
built on these ideas, to propagate an approximation to the density
operator for such systems. The same basic ideas underlie the
Brownian oscillator models [20,21] that have been so pivotal in
the development of the theory of nonlinear spectroscopy of com-
plex systems. More recently [22,23], the spin-boson model with a
hierarchical, Brownian oscillator-like bath was employed to devel-
op an approach that combines accurate quantum dynamics for the
local bath together with a master equation for the global bath. This
marriage of different quantum dynamics methodologies to treat
different parts of a system is the powerful idea that forms the basis
of the methods we develop in this paper.

A similar model, employing only one harmonic local bath mode,
has been used by Shiokawa and Kapral [24] to study the emergence
of quantum-classical dynamics in an open quantum environment.
These authors showed how the relative time-scales of the quantum
subsystem and local bath coherent dynamics change depending on
the couplings and on the choice of the model for the spectral den-
sity (Ohmic and super-Ohmic) for the baths. In particular, they
found that, at high temperatures and for weak couplings, the onset
of decoherence can be much faster for the local bath than for the
quantum subsystem thus enabling a mixed quantum-classical
description of the combined system. This analysis was based on
the influence functional formalism [25], which has a long history
of development and application, starting in the context of open
system dynamics with the early work of Caldeira and Leggett
and others [26,27] who investigated the dissipative dynamics of
a quantum system coupled to a harmonic bath. In simulations,
the influence functional approach has also been used by Makri
and co-workers to study the reduced (quantum or semiclassical)
dynamics of such systems [28]. As an alternative Pollak and co-
workers have extended semiclassical initial value ideas and devel-
oped continuum limit methods for treating the quantum dynamics
of open dissipative systems [29–31]. Shi and Geva [32], on the
other hand, employed a path integral formalism to show how the
mixed quantum-classical Liouville equation can be obtained, for gi-
ven choices of the quantum subsystem basis (diabatic and adia-
batic), from linearization of an influence functional. In all these
numerical applications, the quantum subsystem was directly cou-
pled to the harmonic bath. In this work we rely on the influence
functional formalism to identify conditions in which our linearized
dynamics is accurate for the hierarchical bath model outlined
above. In the theory section we summarize the most relevant as-
pects-some known from the literature [27], some based on our
developments of the influence functional approach and explore
the characteristics of the dynamics of the system when an Ohmic
spectral density is used for the local and global baths. As expected
from the previous work [24], we find that the critical parameters
that control the accuracy of the linearized dynamics for this system
are the temperature, the cutoff frequencies of the bath’s spectra,

and the relative strength of the coupling among the various
subsystems.

In addition to this analysis we present a new algorithm to effi-
ciently simulate the evolution of this type of hierarchical bath
model. The scheme takes advantage of the influence functional to
integrate out the degrees of freedom of the global, harmonic, envi-
ronment. The evolution of the quantum subsystem and of the local
bath is thus reduced to a scheme that has similarities to Brownian
dynamics. We show that this new approach satisfies the fluctua-
tion–dissipation theorem in appropriate limits. The new algorithm
is potentially very useful for reducing the numerical effort needed
to compute the properties of condensed phase systems for which
the hierarchical bath model is reasonable. The accuracy of the
new algorithm will be tested in benchmark calculations exploring
the relevant range of parameters in the special case of a spin cou-
pled to a local harmonic bath (spin-boson), that is bilinearly cou-
pled to a global harmonic environment.

2. Theory

2.1. Hierarchical system-bath model: an influence functional analysis

2.1.1. The model
Condensed phase chemical systems can often be represented in

terms of a quantum system (e.g. electrons, protons, or high fre-
quency vibrations, etc.) that may be influenced by its local environ-
ment, the ‘‘local bath”. This local bath essentially screens the
quantum subsystem from the rest of the environment or ‘‘global
bath”. For simplicity we will thus assume that there is no direct
interaction between the quantum subsystem and the global bath,
but the local environment and the quantum subsystem are cou-
pled. The local and global baths also of course can interact in our
model.

For convenience we will define the system-local bath interac-
tion Hamiltonian

ĥðŝ; r̂Þ ¼ bHs þ Vbðr̂Þ þUs�bðŝ; r̂Þ ð1Þ

where bHs is the quantum subsystem Hamiltonian, including the ki-
netic energy operator, ŝ and r̂ are the system and local bath coordi-
nate operators respectively, and the full Hamiltonian for the
condensed phase models we will consider is thus

bH ¼ p̂2
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Here the last square bracketed term on the right hand side rep-
resents the global bath with phase space operators fPJ;RJg as a set
of harmonic oscillators that are bilinearly coupled to the local bath
coordinate operators r̂, which, in principle, could be highly dimen-
sional. While the Hamiltonian above is a well defined model when
the values of the parameters CJ are small, it is known [27,24] that it
can exhibit pathological behavior in the limit of strong coupling
between the local and global bath. This behavior is usually cor-
rected by modifying the Hamiltonian via the introduction of the
so-called ‘‘counter-term”, thus
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The counter-term completes the square in the bilinear coupling
between the baths and makes the hessian in the bath degrees of
freedom positive definite for this model. The motion of all degrees
of freedom is thus bound and this ensures that the coupling be-
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